Skip to main content
Log in

The ceramide-enriched trans-Golgi compartments reorganize together with other parts of the Golgi apparatus in response to ATP-depletion

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In this study, the ceramide-enriched trans-Golgi compartments representing sites of synthesis of sphingomyelin and higher organized lipids were visualized in control and ATP-depleted hepatoma and endothelial cells using internalization of BODIPY-ceramide and the diaminobenzidine photooxidation method for combined light-electron microscopical exploration. Metabolic stress induced by lowering the cellular ATP-levels leads to reorganizations of the Golgi apparatus and the appearance of tubulo-glomerular bodies and networks. The results obtained with three different protocols, in which BODIPY-ceramide either was applied prior to, concomitantly with, or after ATP-depletion, revealed that the ceramide-enriched compartments reorganize together with other parts of the Golgi apparatus under these conditions. They were found closely associated with and integrated in the tubulo-glomerular bodies formed in response to ATP-depletion. This is in line with the changes of the staining patterns obtained with the Helix pomatia lectin and the GM130 and TGN46 immuno-reactions occurring in response to ATP-depletion and is confirmed by 3D electron tomography. The 3D reconstructions underlined the glomerular character of the reorganized Golgi apparatus and demonstrated continuities of ceramide positive and negative parts. Most interestingly, BODIPY-ceramide becomes concentrated in compartments of the tubulo-glomerular Golgi bodies, even though the reorganization took place before BODIPY-ceramide administration. This indicates maintained functionalities although the regular Golgi stack organization is abolished; the results provide novel insights into Golgi structure–function relationships, which might be relevant for cells affected by metabolic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan D, Obradors MJM (1999) Enzyme distributions in subcellular fractions of BHK cells infected with Semliki Forest virus: evidence for a major fraction of sphingomyelin synthase in the trans-Golgi network. Biochim Biophys Acta 1450:277–287

    Article  CAS  PubMed  Google Scholar 

  • Balch WE, Elliott MM, Keller DS (1986) ATP-coupled transport of vesicular stomatitis virus G protein between the endoplasmic reticulum and the Golgi. J Biol Chem 261:14681–14689

    CAS  PubMed  Google Scholar 

  • Banta M, Polizotto RS, Wood SA, Figueiredo P, Brown WJ (1995) Characterization of a cytosolic activity that induces the formation of Golgi membrane tubules in a cell-free reconstitution system. Biochemistry 34:13359–13366

    Article  CAS  PubMed  Google Scholar 

  • Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382:527–533

    Article  CAS  PubMed  Google Scholar 

  • Brown E, Mantell J, Carter D, Tilly G, Verkade P (2009) Studying intracellular transport using high-pressure freezing and correlative light electron microscopy. Sem Cell Dev Biol 20:910–919

    Article  CAS  Google Scholar 

  • Burger KN, van der Bijl P, van Meer G (1996) Topology of sphingolipid galactosyltransferase in ER and Golgi: transbilayer movement of monohexyl sphingolopids is required for higher glycosphingolipid biosynthesis. J Cell Biol 133:15–28

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JH, Howell KE (2008) Pores galore for the Golgi. Nat Cell Biol 10:1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Chandran S, Machamer CE (2008) Acute perturbation in Golgi organization impact de novo sphingomyelin synthesis. Traffic 9:1894–1904

    Article  CAS  PubMed  Google Scholar 

  • Cluett EB, Wood SA, Banta M, Brown WJ (1993) Tubulation of Golgi membranes in vivo and in vitro in the absence of Brefeldin A. J Cell Biol 120:15–24

    Article  CAS  PubMed  Google Scholar 

  • Cortese K, Diaspro A, Tacchetti C (2009) Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections. J Histochem Cytochem 57:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9:273–284

    Article  PubMed  Google Scholar 

  • Del Valle M, Robledo Y, Sandoval IV (1999) Membrane flow through the Golgi apparatus: specific disassembly of the cis-Golgi network by ATP-depletion. J Cell Sci 112:4017–4029

    PubMed  Google Scholar 

  • Dhani SU, Chiaw PK, Huan LJ, Bear CE (2007) ATP depletion inhibits the endocytosis of CIC-2. J Cell Physiol 214:273–280

    Article  Google Scholar 

  • Dinter A, Berger EG (1998) Golgi-disturbing agents. Histochem Cell Biol 109:571–590

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa M, Nishijima M, Hanada K (1999) Genetic evidence for ATP-dependent endoplasmic reticulum to Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in chinese hamster ovary cells. J Cell Biol 144:673–685

    Article  CAS  PubMed  Google Scholar 

  • Futerman AH, Pagano R (1991) Determination of the intracellular site and topology of glucosylceramide synthesis in rat liver. Biochem J 280:295–302

    CAS  PubMed  Google Scholar 

  • Giepmans BNG (2008) Bridging fluorescence microscopy and electron microscopy. Histochem Cell Biol 130:211–217

    Article  CAS  PubMed  Google Scholar 

  • Grabenbauer M, Geerts WJ, Fernandez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nature Meth 2:857–862

    Article  CAS  Google Scholar 

  • Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, Vieira OV, Mattjus P, Klumperman J, van Meer G, Sprong H (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179:101–115

    Article  CAS  PubMed  Google Scholar 

  • Hanada K (2010) Intracellular trafficking of ceramide by ceramide transfer protein. Proc Jpn Acad Ser B Phys Biol Sci 86:426–437

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Kumagai K, Tomishige N, Kawano M (2007) Cert and intracellular trafficking of ceramide. Biochim Biophys Acta 1771:644–653

    CAS  PubMed  Google Scholar 

  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 2:33–44

    Article  Google Scholar 

  • Jamieson JD, Palade GE (1968) Intracellular transport of secretory proteins in the pancreatic exocrine cell. 3. Dissociation of intracellular transport from protein synthesis. J Cell Biol 39:580–588

    Article  CAS  PubMed  Google Scholar 

  • Jeckel D, Karrenbauer A, Burger KNJ, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117:259–267

    Article  CAS  PubMed  Google Scholar 

  • Kok JW, Babia T, Klappe K, Egea G, Hoekstra D (1998) Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated. Biochem J 333:779–786

    CAS  PubMed  Google Scholar 

  • Ladinsky MS, Kremer JR, Furcinitti PS, McIntosh R, Howell KE (1994) HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J Cell Biol 127:29–38

    Article  CAS  PubMed  Google Scholar 

  • Ladinsky MS, Mastronade DN, McIntosh JR, Howell KE (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Lannert H, Bünning C, Jeckel D, Wieland FT (1994) Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett 342:91–96

    Article  CAS  PubMed  Google Scholar 

  • Lipsky NG, Pagano RE (1983) Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc Natl Acad Sci USA 80:2608–2612

    Article  CAS  PubMed  Google Scholar 

  • Mandon EC, Ehses I, Rother J, van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267:11144–11148

    CAS  PubMed  Google Scholar 

  • Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes lucifer yellow useful for electron microscopy. Science 217:953–995

    Article  CAS  PubMed  Google Scholar 

  • Marks DL, Bittman R, Pagano RE (2008) Use of bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem Cell Biol 130:819–832

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Alonso E, Egea G, Ballesta J, Martinez-Menárguez JA (2005) Structure and dynamics of the Golgi complex at 15°C: low temperature induces the formation of Golgi-derived tubules. Traffic 6:32–44

    Article  CAS  PubMed  Google Scholar 

  • Meisslitzer-Ruppitsch C, Vetterlein M, Stangl H, Meier S, Neumüller J, Freissmuth M, Pavelka M, Ellinger A (2008) Electron microscopic visualization of fluorescent signals in cellular compartments and organelles by means of DAB-photoconversion. Histochem Cell Biol 130:407–419

    Article  CAS  Google Scholar 

  • Meisslitzer-Ruppitsch C, Röhrl C, Neumüller J, Pavelka M, Ellinger A (2009) Photooxidation technology for correlated light and electron microscopy. J Microscopy 235:322–335

    Article  CAS  Google Scholar 

  • Michel C, van Echten-Deckert G (1997) Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett 416:153–155

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Beznoussenko GV (2009) Correlative microscopy: a potent tool for study of rare or unique cellular and tissue events. J Microscopy 235:308–321

    Article  CAS  Google Scholar 

  • Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE (2004) Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5:338–345

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Neumüller J, Neumüller-Guber SE, Lipovac M, Mosgoeller W, Vetterlein M, Pavelka M, Huber J (2006) Immunological and ultrastructural characterization of endothelial cell cultures differentiated from human cord blood derived endothelial progenitor cells. Histochem Cell Biol 126:649–664

    Article  PubMed  Google Scholar 

  • Pagano RE, Sepanski MA, Martin OC (1989) Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J Cell Biol 109:2067–2079

    Article  CAS  PubMed  Google Scholar 

  • Pagano RE, Martin OC, Kang HC, Haugland RP (1991) A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of sphingolipid precurser. J Cell Biol 113:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Pavelka M, Neumüller J, Ellinger A (2008) Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 129:277–288

    Article  CAS  PubMed  Google Scholar 

  • Röhrl C, Pagler TA, Strobl W, Ellinger A, Neumüller J, Pavelka M, Stangl H, Meisslitzer-Ruppitsch C (2010) Characterization of endocytic compartments after holo-high density lipoprotein particle uptake in HepG2 cells. Histochem Cell Biol 133:261–272

    Article  PubMed  Google Scholar 

  • Saraste J, Palade GE, Farquhar MG (1986) Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc Natl Acad Sci USA 83:6425–6429

    Article  CAS  PubMed  Google Scholar 

  • Schwarz H, Humbel BM (2007) Correlative light and electron microscopy using immunolabeled resin sections. Methods Mol Biol 369:229–256

    Article  CAS  PubMed  Google Scholar 

  • Schweizer A, Clausen H, van Meer G, Hauri HP (1994) Localization of O-glycan initiation, sphingomyelin synthesis and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment. J Biol Chem 269:4035–4041

    CAS  PubMed  Google Scholar 

  • Shimeno H, Sakamozo M, Kouchi T, Kowakame T, Kihara T (1998) Partial purification and characterization of sphingosine N-acyltransferase (ceramide synthase) from bovine liver mitochondrion-rich fraction. Lipids 33:601–605

    Article  CAS  PubMed  Google Scholar 

  • Thor F, Gautschi M, Geiger R, Helenius A (2009) Bulk flow revisted: transport of a soluble protein in the secretory pathway. Traffic 10:1819–1830

    Article  CAS  PubMed  Google Scholar 

  • Van Meer G, Hoetzl S (2010) Sphingolipid topology and the dynamic organization and function of membrane proteins. FEBS Lett 584:1800–1805

    Article  PubMed  Google Scholar 

  • Van Meer G, Stelzer EHK, Wijnaendts-van-Resandt RW, Simons K (1987) Sorting of sphingolipids in epithelial (Madin-Darby Canine Kidney) cells. J Cell Biol 105:1623–1635

    Article  PubMed  Google Scholar 

  • Wollmann E, Vetterlein M, Ellinger A, Neumüller J, Pavelka M (2009) Three dimensional analysis of the Golgi apparatus: Reorganizations in response to ATP-depletion and replenishment. In: Pabst MA, Zellnig G (eds) MC2009, vol 2, pp 51–52

Download references

Acknowledgments

The authors thank Mrs. Regina Wegscheider, Mag. Beatrix Mallinger and Mrs. Barbara Kornprat for excellent technical work and Mr. Ulrich Kaindl for his essential help with the artwork and the 3D-model. This work was partially supported by the Austrian Science Fund (FWF) project P20116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Meisslitzer-Ruppitsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meisslitzer-Ruppitsch, C., Röhrl, C., Ranftler, C. et al. The ceramide-enriched trans-Golgi compartments reorganize together with other parts of the Golgi apparatus in response to ATP-depletion. Histochem Cell Biol 135, 159–171 (2011). https://doi.org/10.1007/s00418-010-0773-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0773-z

Keywords

Navigation