Skip to main content

Advertisement

Log in

Liver endothelial cells in NAFLD and transition to NASH and HCC

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cotter TG, Rinella M (2020) Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology 158:1851–1864

    Article  CAS  PubMed  Google Scholar 

  2. Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62:S47–S64. https://doi.org/10.1016/j.jhep.2014.12.012

    Article  PubMed  Google Scholar 

  3. Godoy-Matos AF, Silva Júnior WS, Valerio CM (2020) NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr 12:60. https://doi.org/10.1186/s13098-020-00570-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Muzica CM et al (2020) Nonalcoholic fatty liver disease and type 2 diabetes mellitus: a bidirectional relationship. Can J Gastroenterol Hepatol 2020:6638306. https://doi.org/10.1155/2020/6638306

    Article  PubMed  PubMed Central  Google Scholar 

  5. Katsarou A et al (2020) Metabolic inflammation as an instigator of fibrosis during nonalcoholic fatty liver disease. World J Gastroenterol 26:1993–2011. https://doi.org/10.3748/WJG.V26.I17.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu J, Shen J, Sun TT, Zhang X, Wong N (2013) Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin Cancer Biol 23:483–491. https://doi.org/10.1016/j.semcancer.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Bertot LC, Adams LA (2019) Trends in hepatocellular carcinoma due to non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 13:179–187

    Article  CAS  PubMed  Google Scholar 

  8. Marchesini G et al (2016) EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 64:1388–1402

    Article  Google Scholar 

  9. Ramanathan R, Ali AH, Ibdah JA (2022) Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci 23:7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mihm S (2018) Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver. Int J Mol Sci 19:3104. https://doi.org/10.3390/ijms19103104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatzigeorgiou A, Chavakis T (2015) Immune cells and metabolism. Handb Exp Pharmacol 233:221–249

    Article  Google Scholar 

  12. Mendez-Sanchez N et al (2018) New aspects of lipotoxicity in nonalcoholic steatohepatitis. Int J Mol Sci 19:2034. https://doi.org/10.3390/ijms19072034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B (2015) Liver sinusoidal endothelial cells. Compr Physiol 5:1751–1774

    Article  PubMed  Google Scholar 

  14. Wilkinson AL, Qurashi M, Shetty S (2020) The role of sinusoidal endothelial cells in the axis of inflammation and cancer within the liver. Front Physiol 11:990. https://doi.org/10.3389/fphys.2020.00990

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nasiri-Ansari N et al (2022) Endothelial cell dysfunction and nonalcoholic fatty liver disease (NAFLD): a concise review. Cells 11:2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poisson J et al (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66:212–227

    Article  CAS  PubMed  Google Scholar 

  17. Xie G et al (2012) Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 142:918-927.e6

    Article  PubMed  Google Scholar 

  18. Deleve LD (2015) Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61:1740–1746

    Article  CAS  PubMed  Google Scholar 

  19. Cogger VC et al (2010) Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J Struct Biol 171:382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Braet F et al (2002) The new anti-actin agent dihydrohalichondramide reveals fenestrae-forming centers in hepatic endothelial cells. BMC Cell Biol 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  21. DeLeve LD, Maretti-Mira AC (2017) Liver sinusoidal endothelial cell: an update. Semin Liver Dis 37:377–387

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hammoutene A, Rautou PE (2019) Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J Hepatol 70:1278–1291

    Article  CAS  PubMed  Google Scholar 

  23. van Berkel TJC, de Rijke YB, Kruijt JK (1991) Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats: recognition by various scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem 266:2282–2289

    Article  PubMed  Google Scholar 

  24. Svistounov D et al (2012) The relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells. PLoS One 7:e46134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. le Couteur DG, Fraser R, Cogger VC, McLean AJ (2002) Hepatic pseudocapillarisation and atherosclerosis in ageing. Lancet 359:1612–1615

    Article  PubMed  Google Scholar 

  26. Yokomori H et al (2003) Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells. Liver Int 23:467–475

    Article  CAS  PubMed  Google Scholar 

  27. Le Couteur DG et al (2001) Pseudocapillarization and associated energy limitation in the aged rat liver. Hepatology 33:537–543

    Article  PubMed  Google Scholar 

  28. Le Couteur DG, Fraser R, Hilmer S, Rivory LP, McLean AJ (2005) The hepatic sinusoid in aging and cirrhosis. Clin Pharmacokinet 44:187–200

    Article  PubMed  Google Scholar 

  29. Cogger VC et al (2004) The effects of oxidative stress on the liver sieve. J Hepatol 41:370–376

    Article  CAS  PubMed  Google Scholar 

  30. Qing Z et al (2021) Hypoxia maintains the fenestration of liver sinusoidal endothelial cells and promotes their proliferation through the SENP1/HIF-1α/VEGF signaling axis. Biochem Biophys Res Commun 540:42–50

    Article  CAS  PubMed  Google Scholar 

  31. Miyao M et al (2015) Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab Investig 95:1130–1144

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Q et al (2019) High glucose/ox-LDL induced hepatic sinusoidal capillarization via αvβ5/FAK/ERK signaling pathway. Biochem Biophys Res Commun 513:1055–1062

    Article  CAS  PubMed  Google Scholar 

  33. Pasarín M et al (2012) Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD. PLoS One 7:e32785

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mori T et al (1993) Defenestration of the sinusoidal endothelial cell in a rat model of cirrhosis. Hepatology 17:891–897

    Article  CAS  PubMed  Google Scholar 

  35. Jamieson HA et al (2007) Caloric restriction reduces age-related pseudocapillarization of the hepatic sinusoid. Exp Gerontol 42:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Papadopoulos G et al (2023) Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity. Metabolism 144:155552

    Article  CAS  PubMed  Google Scholar 

  37. Cogger VC et al (2016) Dietary macronutrients and the aging liver sinusoidal endothelial cell. Am J Physiol Heart Circ Physiol 310:H1064–H1070

    Article  PubMed  Google Scholar 

  38. Zhang Q et al (2014) oxLDL induces injury and defenestration of human liver sinusoidal endothelial cells via LOX1. J Mol Endocrinol 53:281–293

    Article  CAS  PubMed  Google Scholar 

  39. O’Reilly JN, Cogger VC, Fraser R, Le Couteur DG (2010) The effect of feeding and fasting on fenestrations in the liver sinusoidal endothelial cell. Pathology 42:255–258

    Article  PubMed  Google Scholar 

  40. Herrnberger L et al (2014) Formation of fenestrae in murine liver sinusoids depends on plasmalemma vesicle-associated protein and is required for lipoprotein passage. PLoS One 9:1–26

    Google Scholar 

  41. Peng Q et al (2014) Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats. Biochem Biophys Res Commun 450:685–691

    Article  CAS  PubMed  Google Scholar 

  42. Soderborg TK et al (2018) The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat Commun 9:1–12

    Article  CAS  Google Scholar 

  43. Marra F, Svegliati-Baroni G (2018) Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 68:280–295

    Article  CAS  PubMed  Google Scholar 

  44. Dobbs BR, Rogers GWT, Xing HY, Fraser R (1994) Endotoxin-induced defenestration of the hepatic sinusoidal endothelium: a factor in the pathogenesis of cirrhosis? Liver 14:230–233

    Article  CAS  PubMed  Google Scholar 

  45. Xie G et al (2013) Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 62:299–309

    Article  CAS  PubMed  Google Scholar 

  46. Witek RP et al (2009) Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 136:320-330.e2

    Article  CAS  PubMed  Google Scholar 

  47. Fang ZQ et al (2022) Notch-triggered maladaptation of liver sinusoidal endothelium aggravates nonalcoholic steatohepatitis through endothelial nitric oxide synthase. Hepatology 76:742–758

    Article  CAS  PubMed  Google Scholar 

  48. Pasarín M et al (2011) Insulin resistance and liver microcirculation in a rat model of early NAFLD. J Hepatol 55:1095–1102

    Article  PubMed  Google Scholar 

  49. Rockey DC, Chung JJ (1998) Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 114:344–351

    Article  CAS  PubMed  Google Scholar 

  50. DeLeve LD, Wang X, Guo Y (2008) Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48:920–930

    Article  CAS  PubMed  Google Scholar 

  51. Dufton NP et al (2017) Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun 8:895

    Article  PubMed  PubMed Central  Google Scholar 

  52. De Haan W et al (2020) Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am J Physiol Gastrointest Liver Physiol 318:G803–G815

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gómez-Salinero JM et al (2022) Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 29:593-609.e7

    Article  PubMed  PubMed Central  Google Scholar 

  54. De Smedt J et al (2021) PU.1 drives specification of pluripotent stem cell-derived endothelial cells to LSEC-like cells. Cell Death Dis 12:84

    Article  PubMed  PubMed Central  Google Scholar 

  55. De Haan W et al (2022) Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis. Cardiovasc Res 118:1262–1275

    Article  PubMed  Google Scholar 

  56. Manicardi N et al (2021) Transcriptomic profiling of the liver sinusoidal endothelium during cirrhosis reveals stage-specific secretory signature. Cancers (Basel) 13:2688

    Article  CAS  PubMed  Google Scholar 

  57. Nagy D, Maude H, Birdsey GM, Randi AM, Cebola I (2023) RISING STARS: liver sinusoidal endothelial transcription factors in metabolic homeostasis and disease. J Mol Endocrinol 71:e230026

    Article  PubMed  Google Scholar 

  58. Ramachandran P et al (2019) Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575:512–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Su T et al (2021) Single-cell transcriptomics reveals zone-specific alterations of liver sinusoidal endothelial cells in cirrhosis. Cell Mol Gastroenterol Hepatol 11:1139–1161

    Article  PubMed  Google Scholar 

  60. Bressan D, Battistoni G, Hannon GJ (2023) The dawn of spatial omics. Science 381:eabq4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lorenz L et al (2018) Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 562:128–132

    Article  CAS  PubMed  Google Scholar 

  62. Mitten EK, Baffy G (2022) Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 77:1642–1656

    Article  CAS  PubMed  Google Scholar 

  63. Rabbany SY, Rafii S (2018) Blood flow forces liver growth. Nature 562:42–43

    Article  CAS  PubMed  Google Scholar 

  64. Kang N (2020) Mechanotransduction in liver diseases. Semin Liver Dis 40:84–90

    Article  PubMed  Google Scholar 

  65. Planas-Paz L et al (2012) Mechanoinduction of lymph vessel expansion. EMBO J 31:788–804

    Article  CAS  PubMed  Google Scholar 

  66. Hilscher MB et al (2019) Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology 157:193-209.e9

    Article  CAS  PubMed  Google Scholar 

  67. Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080. https://doi.org/10.1016/j.ajpath.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smedsrød B et al (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35:1509–1516

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wells RG (2008) Cellular sources of extracellular matrix in hepatic fibrosis. Clin Liver Dis 12:759–768

    Article  PubMed  PubMed Central  Google Scholar 

  70. Neubauer K et al (1999) Transforming growth factor-beta1 stimulates the synthesis of basement membrane proteins laminin, collagen type IV and entactin in rat liver sinusoidal endothelial cells. J Hepatol 31:692–702

    Article  CAS  PubMed  Google Scholar 

  71. Iwaisako K et al (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA 111:E3297–E3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mederacke I et al (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823

    Article  PubMed  Google Scholar 

  73. Dufton NP et al (2017) Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun 8:1–14

    Article  CAS  Google Scholar 

  74. Li Z et al (2019) MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription. Cell Death Dis 10:899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ribera J et al (2017) A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury. Am J Physiol Gastrointest Liver Physiol 313:G492–G504

    Article  PubMed  Google Scholar 

  76. Shetty S, Lalor PF, Adams DH (2018) Liver sinusoidal endothelial cells—gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 15:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK (2021) The scavenger function of liver sinusoidal endothelial cells in health and disease. Front Physiol 12:757469

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, Francés R (2021) Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol 18:411–431. https://doi.org/10.1038/s41575-020-00411-3

    Article  PubMed  Google Scholar 

  79. Knolle PA et al (1999) Induction of cytokine production in naive CD4+ T cells by antigen- presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward T(h1) cells. Gastroenterology 116:1428–1440

    Article  CAS  PubMed  Google Scholar 

  80. Neumann K et al (2015) Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway. Eur J Immunol 45:2008–2016

    Article  CAS  PubMed  Google Scholar 

  81. Diehl L et al (2008) Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47:296–305

    Article  CAS  PubMed  Google Scholar 

  82. Carambia A et al (2014) TGF-β-dependent induction of CD4+CD25+Foxp3 + Tregs by liver sinusoidal endothelial cells. J Hepatol 61:594–599

    Article  CAS  PubMed  Google Scholar 

  83. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689. https://doi.org/10.1038/nri2156

    Article  CAS  PubMed  Google Scholar 

  84. Furuta K et al (2021) Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis. J Clin Investig 131:e143690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ip E, Farrell G, Hall P, Robertson G, Leclercq I (2004) Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39:1286–1296

    Article  CAS  PubMed  Google Scholar 

  86. Weston CJ et al (2015) Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Investig 125:501–520

    Article  PubMed  Google Scholar 

  87. Guo Q et al (2022) Liver sinusoidal endothelial cell expressed vascular cell adhesion molecule 1 promotes liver fibrosis. Front Immunol 13:1–15

    Article  CAS  Google Scholar 

  88. Carr RM (2021) VCAM-1: closing the gap between lipotoxicity and endothelial dysfunction in nonalcoholic steatohepatitis. J Clin Investig 131:e147556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chimen M et al (2017) Monocyte subsets coregulate inflammatory responses by integrated signaling through TNF and IL-6 at the endothelial cell interface. J Immunol 198:2834–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61:1066–1079

    Article  PubMed  Google Scholar 

  91. Nati M et al (2016) The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord 17:29–39

    Article  CAS  PubMed  Google Scholar 

  92. Hammoutene A et al (2020) A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol 72:528–538

    Article  CAS  PubMed  Google Scholar 

  93. Flessa CM et al (2021) Endoplasmic reticulum stress and autophagy in the pathogenesis of non-alcoholic fatty liver disease (NAFLD): current evidence and perspectives. Curr Obes Rep 10:134–161

    Article  PubMed  Google Scholar 

  94. Duan JL et al (2023) Age-related liver endothelial zonation triggers steatohepatitis by inactivating pericentral endothelium-derived C-kit. Nat Aging 3:258–274

    Article  CAS  PubMed  Google Scholar 

  95. Papatheodoridi AM, Chrysavgis L, Koutsilieris M, Chatzigeorgiou A (2020) The role of senescence in the development of nonalcoholic fatty liver disease and progression to nonalcoholic steatohepatitis. Hepatology 71:363–374

    Article  CAS  PubMed  Google Scholar 

  96. Moustakas II et al (2021) Hepatic senescence accompanies the development of NAFLD in non-aged mice independently of obesity. Int J Mol Sci 22:3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grosse L, Bulavin DV (2020) LSEC model of aging. Aging 12:11152–11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duan JL et al (2022) Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1–P21/P16 axis. Hepatology 75:584–599

    Article  CAS  PubMed  Google Scholar 

  99. Maeso-Díaz R et al (2018) Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 17:e12829

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang D et al (2023) Assessing the effects of aging on the liver endothelial cell landscape using single-cell RNA sequencing. Hepatol Commun 7:e0021–e0021

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lei L, Mourabit HEI, Housset C, Cadoret A, Lemoinne S (2021) Role of angiogenesis in the pathogenesis of nafld. J Clin Med 10:1338. https://doi.org/10.3390/jcm10071338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  103. Bocca C, Novo E, Miglietta A, Parola M (2015) Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol 1:477–488

    Article  PubMed  PubMed Central  Google Scholar 

  104. McCuskey RS, Reilly FD (1993) Hepatic microvasculature: dynamic structure and its regulation. Semin Liver Dis 13:1–12

    Article  CAS  PubMed  Google Scholar 

  105. Fernández M et al (2009) Angiogenesis in liver disease. J Hepatol 50:604–620

    Article  PubMed  Google Scholar 

  106. Hadjihambi A et al (2023) Novel in vivo micro-computed tomography imaging techniques for assessing the progression of non-alcoholic fatty liver disease. J Vis Exp. https://doi.org/10.3791/64838

    Article  PubMed  Google Scholar 

  107. Matsuda M, Seki E (2020) The liver fibrosis niche: Novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food Chem Toxicol 143:111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Granzow M et al (2014) Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 60:334–348

    Article  CAS  PubMed  Google Scholar 

  109. Yoshiji H et al (2006) Angiotensin-II and vascular endothelial growth factor interaction plays an important role in rat liver fibrosis development. Hepatol Res 36:124–129

    Article  CAS  PubMed  Google Scholar 

  110. Coulon S et al (2012) Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine 59:442–449

    Article  CAS  PubMed  Google Scholar 

  111. Tarantino G et al (2009) Could inflammatory markers help diagnose nonalcoholic steatohepatitis? Eur J Gastroenterol Hepatol 21:504–511

    Article  CAS  PubMed  Google Scholar 

  112. Cayón A, Crespo J, Guerra AR, Pons-Romero F (2008) Gene expression in obese patients with non-alcoholic steatohepatitis. Rev Esp Enferm Dig 100:212–218

    PubMed  Google Scholar 

  113. Baselli GA et al (2020) Liver transcriptomics highlights interleukin-32 as novel NAFLD-related cytokine and candidate biomarker. Gut 69:1855–1866

    Article  CAS  PubMed  Google Scholar 

  114. Lefere S et al (2019) Angiopoietin-2 promotes pathological angiogenesis and is a therapeutic target in murine nonalcoholic fatty liver disease. Hepatology 69:1087–1104

    Article  CAS  PubMed  Google Scholar 

  115. Kitade M et al (2006) Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology 44:983–991

    Article  CAS  PubMed  Google Scholar 

  116. Coulon S et al (2013) Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models. Hepatology 57:1793–1805

    Article  CAS  PubMed  Google Scholar 

  117. Ding BS et al (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505:97–102

    Article  PubMed  Google Scholar 

  118. Marrone G et al (2013) The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins. J Hepatol 58:98–103

    Article  CAS  PubMed  Google Scholar 

  119. Wang R et al (2015) Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 290:30684–30696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Winkler M et al (2021) Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J Hepatol 74:380–393

    Article  CAS  PubMed  Google Scholar 

  121. Hu J et al (2014) Endothelial cell-derived Angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343:416–419

    Article  CAS  PubMed  Google Scholar 

  122. Ding BS et al (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Duan JL et al (2018) Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 68:677–690

    Article  CAS  PubMed  Google Scholar 

  124. Shen Z et al (2023) Expansion of macrophage and liver sinusoidal endothelial cell subpopulations during non-alcoholic steatohepatitis progression. iScience 26:106572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Arner E et al (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347:1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Khachigian LM (2021) Early growth response-1, an integrative sensor in cardiovascular and inflammatory disease. J Am Heart Assoc 10:e023539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM (2003) Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9:1026–1032

    Article  CAS  PubMed  Google Scholar 

  128. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  CAS  PubMed  Google Scholar 

  129. Yoshitomi Y, Ikeda T, Saito-takatsuji H, Yonekura H (2021) Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development. Int J Mol Sci 22:1–14

    Article  Google Scholar 

  130. Gerald D et al (2013) RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. Nat Commun 4:2824

    Article  PubMed  Google Scholar 

  131. Luna G, Paez J, Cardier JE (2004) Expression of the hematopoietic stem cell antigen Sca-1 (LY-6A/E) in liver sinusoidal endothelial cells: possible function of Sca-1 in endothelial cells. Stem Cells Dev 13:528–535

    Article  CAS  PubMed  Google Scholar 

  132. Xiong X et al (2019) Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 75:644-660.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kalucka J et al (2020) Single-cell transcriptome atlas of murine endothelial cells. Cell 180:764-779.e20

    Article  CAS  PubMed  Google Scholar 

  134. Sakamoto M (2009) Early HCC: diagnosis and molecular markers. J Gastroenterol 44:108–111

    Article  CAS  PubMed  Google Scholar 

  135. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M (2019) From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 16:411–428. https://doi.org/10.1038/s41575-019-0145-7

    Article  PubMed  Google Scholar 

  136. Massoud O, Charlton M (2018) Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis and hepatocellular carcinoma. Clin Liver Dis 22:201–211. https://doi.org/10.1016/j.cld.2017.08.014

    Article  PubMed  Google Scholar 

  137. Paradis V et al (2009) Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liverfibrosis: a pathological analysis. Hepatology 49:851–859

    Article  PubMed  Google Scholar 

  138. Kanwal F et al (2018) Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology 155:1828–18372

    Article  PubMed  Google Scholar 

  139. Sung H et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  140. Yang M, Zhang C (2021) The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am J Cancer Res 11:1845–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Géraud C et al (2013) Endothelial transdifferentiation in hepatocellular carcinoma: loss of stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int 33:1428–1440

    Article  PubMed  Google Scholar 

  142. Hughes A, Dhoot GK (2018) Dysregulated cancer cell transdifferentiation into erythrocytes is an additional metabolic stress in hepatocellular carcinoma. Tumour Biol 40:1010428318811467

    Article  PubMed  Google Scholar 

  143. Marfels C, Hoehn M, Wagner E, Günther M (2013) Characterization of in vivo chemoresistant human hepatocellular carcinoma cells with transendothelial differentiation capacities. BMC Cancer 13:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu LQ et al (2007) Phenotypic and functional differences between human liver cancer endothelial cells and liver sinusoidal endothelial cells. J Vasc Res 45:78–86

    Article  PubMed  Google Scholar 

  145. Zhuang PY et al (2015) Higher proliferation of peritumoral endothelial cells to IL-6/sIL-6R than tumoral endothelial cells in hepatocellular carcinoma. BMC Cancer 15:830

    Article  PubMed  PubMed Central  Google Scholar 

  146. Olsavszky V et al (2021) Exploring the transcriptomic network of multi-ligand scavenger receptor Stabilin-1- and Stabilin-2-deficient liver sinusoidal endothelial cells. Gene 768:145284

    Article  CAS  PubMed  Google Scholar 

  147. Hoshida Y et al (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359:1995–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Thompson KJ et al (2018) Altered fatty acid-binding protein 4 (FABP4) expression and function in human and animal models of hepatocellular carcinoma. Liver Int 38:1074–1083

    Article  CAS  PubMed  Google Scholar 

  149. Laouirem S et al (2019) Endothelial fatty liver binding protein 4: a new targetable mediator in hepatocellular carcinoma related to metabolic syndrome. Oncogene 38:3033–3046

    Article  CAS  PubMed  Google Scholar 

  150. Milner KL et al (2009) Adipocyte fatty acid binding protein levels relate to inflammation and fibrosis in nonalcoholic fatty liver disease. Hepatology 49:1926–1934

    Article  CAS  PubMed  Google Scholar 

  151. Chen KJ et al (2011) Selective recruitment of regulatory T cell through CCR6-CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS One 6:e24671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fu J et al (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328–2339

    Article  PubMed  Google Scholar 

  153. Mendt M, Cardier JE (2017) Activation of the CXCR4 chemokine receptor enhances biological functions associated with B16 melanoma liver metastasis. Melanoma Res 27:300–308

    Article  CAS  PubMed  Google Scholar 

  154. Arteta B et al (2010) Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific antitumor immunity through interleukin-1-induced mannose receptor in mice. Hepatology 51:2172–2182

    Article  CAS  PubMed  Google Scholar 

  155. Ma C et al (2018) Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360:eaan5931

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhang N et al (2011) Platelet adhesion and fusion to endothelial cell facilitate the metastasis of tumor cell in hypoxia-reoxygenation condition. Clin Exp Metastasis 28:1–12

    Article  PubMed  Google Scholar 

  157. Kitakata H et al (2002) Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res 62:6682–6687

    CAS  PubMed  Google Scholar 

  158. Medina J, Arroyo AG, Sánchez-Madrid F, Moreno-Otero R (2004) Angiogenesis in chronic inflammatory liver disease. Hepatology 39:1185–1195

    Article  CAS  PubMed  Google Scholar 

  159. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  PubMed  Google Scholar 

  160. Semela D, Dufour JF (2004) Angiogenesis and hepatocellular carcinoma. J Hepatol 41:864–880

    Article  PubMed  Google Scholar 

  161. Folkman J (2007) Angiogenesis: An organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  162. Chaparro Sánchez M, Sanz-Cameno P, Trapero-Marugán M, García-Buey L, Moreno-Otero R (2007) Mechanisms of angiogenesis in chronic inflammatory liver disease. Ann Hepatol 6:208–213. https://doi.org/10.1016/s1665-2681(19)31900-3

    Article  Google Scholar 

  163. Mitsuhashi N et al (2003) Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology 37:1105–1113

    Article  CAS  PubMed  Google Scholar 

  164. Semela D et al (2008) Platelet-derived growth factor signaling through ephrin-B2 regulates hepatic vascular structure and function. Gastroenterology 135:671–679

    Article  CAS  PubMed  Google Scholar 

  165. Yoshiji H et al (2014) Combination of sorafenib and angiotensin-II receptor blocker attenuates preneoplastic lesion development in a non-diabetic rat model of steatohepatitis. J Gastroenterol 49:1421–1429

    Article  CAS  PubMed  Google Scholar 

  166. Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL (2020) The race to bash NASH: emerging targets and drug development in a complex liver disease. J Med Chem 63:5031–5073. https://doi.org/10.1021/acs.jmedchem.9b01701

    Article  CAS  PubMed  Google Scholar 

  167. Anstee QM et al (2023) Cenicriviroc lacked efficacy to treat liver fibrosis in nonalcoholic steatohepatitis: AURORA phase III randomized study. Clin Gastroenterol Hepatol. https://doi.org/10.1016/J.CGH.2023.04.003

    Article  PubMed  Google Scholar 

  168. Shojaie L, Ali M, Iorga A, Dara L (2021) Mechanisms of immune checkpoint inhibitor-mediated liver injury. Acta Pharm Sin B 11:3727–3739. https://doi.org/10.1016/j.apsb.2021.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Llovet JM, Montal R, Sia D, Finn RS (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15:599–616. https://doi.org/10.1038/s41571-018-0073-4

    Article  PubMed  Google Scholar 

Download references

Funding

Supported by the Hellenic Foundation for Research and Innovation (HFRI #3222 to AC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Chatzigeorgiou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velliou, RI., Legaki, AI., Nikolakopoulou, P. et al. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cell. Mol. Life Sci. 80, 314 (2023). https://doi.org/10.1007/s00018-023-04966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04966-7

Keywords

Navigation