Skip to main content

Correlative Light and Electron Microscopy Using Immunolabeled Resin Sections

  • Protocol
Electron Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 369))

Abstract

In correlative microscopy, light microscopy provides the overview and orientation in the complex cells and tissue, whereas electron microscopy offers the detailed localization and correlation to subcellular structures. In this chapter, we offer the detailed high-quality electron microscopical preparation methods for the optimum preservation of the cellular ultrastructure. From such preparations, serial thin sections are collected and used for comparative histochemical, immunofluorescence, and immunogold staining. In light microscopy, histological stains are used to identify the orientation of the sample, and immunofluorescence labeling is used to identify the region of interest, namely, the labeled cells expressing the macromolecule under investigation. Subsequent sections, labeled with immunogold, are analyzed by electron microscopy to identify the label within the cellular architecture at high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffiths, G. (2001) Bringing electron microscopy back into focus for cell biology. Trends Cell Biol. 11, 153–154.

    Article  CAS  PubMed  Google Scholar 

  2. Brink, H. A., Barfels, M. M. G., Burgner, R. P., and Edwards, B. N. (2003) A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S) TEMs. Ultramicroscopy 96, 367–384.

    Article  CAS  PubMed  Google Scholar 

  3. Barfels, M. M. G., Jiang, X., Heng, Y. M., Arsenault, A. L., and Ottensmeyer, F. P. (1998) Low energy loss electron microscopy of chromophores. Micron 29, 97–104.

    Article  CAS  PubMed  Google Scholar 

  4. Grabenbauer, M., Geerts, W. J. C., Fernadez-Rodriguez, J., Hoenger, A., Koster, A. J., and Nilsson, T. (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat. Methods 2, 857–862.

    Article  CAS  PubMed  Google Scholar 

  5. Gaietta, G., Deerink, T. J., Adams, S. R., Bouwer, J., Tour, O., Laird, D. W., et al. (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507.

    Article  CAS  PubMed  Google Scholar 

  6. Geuze, H. J. (1999) A future for electron microscopy in cell biology? Trends Cell Biol. 9, 92–93.

    Article  CAS  PubMed  Google Scholar 

  7. Melan, M. A. and Sluder, G. (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J. Cell Sci. 101, 731–743.

    PubMed  Google Scholar 

  8. Humbel, B. M., de Jong, M. D. M., Müller, W. H., and Verkleij, A. J. (1998) Pre-embedding immunolabeling for electron microscopy: an evaluation of premeabilization methods and markers. Microsc. Res. Tech. 42, 43–48.

    Article  CAS  PubMed  Google Scholar 

  9. Brink, M., Humbel, B. M., de Kloet, E. R., and van Driel, R. (1992) Evidence against the model of nuclear translocation for the glucocorticoid receptor. Endocrinology 130, 3575–358.

    Article  CAS  PubMed  Google Scholar 

  10. Stierhof, Y.-D., Schwarz, H., and Frank, H. (1986) Transverse sectioning of plastic-embedded immunolabeled cryosections: morphology and permeability to protein A-colloidal gold complexes. J. Ultrastruct. Molecul. Struct. Res. 97, 187–196.

    Article  CAS  Google Scholar 

  11. Stierhof, Y.-D. and Schwarz, H. (1989) Labeling properties of sucrose-infiltrated cryosections. Scanning Microsc. 3, Suppl. 35–46.

    CAS  Google Scholar 

  12. Schwarz, H. (1994) Immunolabelling of ultrathin resin sections for fluorescence and electron microscopy in Electron Microscopy 1994, ICEM 13 (Jouffrey, B. and Coliex, C., eds.), Vol. 3, Les Editions de Physique, Les Ulis, France, pp. 255–256.

    Google Scholar 

  13. Schwarz, H., Hohenberg, H., and Humbel, B. M. (1993) Freeze-substitution in virus research: a preview, in Immunoelectron Microscopy in Virus Diagnosis and Research (Hyatt, A. D. and Eaton, B. T., eds.), CRC Press Inc., Boca Raton, FL, pp. 97–118.

    Google Scholar 

  14. Schwarz, H. (1998) Correlative immunolabelling of ultrathin resin sections for light and electron microscopy, in Electron Microscopy 1998, ICEM 14 (Calderón Benavides, H. A., Yacamán, M. J., Jiménez, L. F., and Kouri, J. B., eds.), Vol. IV, Institute of Physics Publishing, Bristol, Philadelphia, pp. 865–866.

    Google Scholar 

  15. Tokuyasu, K. T. (1973) A technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol. 57, 551–565.

    Article  CAS  PubMed  Google Scholar 

  16. Tokuyasu, K. T. (1986) Application of cryoultramicrotomy to immunocytochemistry. J. Microsc. (Oxford) 143, 139–149.

    CAS  Google Scholar 

  17. Acetarin, J. D., Carlemalm, E., and Villiger, W. (1986) Developments of new Lowicryl resins for embedding biological specimens at even lower temperatures. J. Microsc. (Oxford) 143, 81–88.

    CAS  Google Scholar 

  18. Carlemalm, E., Garavito, R. M., and Villiger, W. (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J. Microsc. (Oxford) 126, 123–143.

    CAS  Google Scholar 

  19. Newman, G. R. and Hobot, J. A. (1987) Modern acrylics for post-embedding immunostaining techniques. J. Histochem. Cytochem. 35, 971–981.

    CAS  PubMed  Google Scholar 

  20. Newman, G. R. and Hobot, J. A. (1993) Resin Microscopy and On-Section Immunocytochemistry, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  21. Scala, C., Cenacchi, G., Ferrari, C., Pasquinelli, G., Preda, P., and Manara, G. C. (1992) A new acrylic resin formulation: a useful tool for histological, ultrastructural, and immunocytochemical investigations. J. Histochem. Cytochem. 40, 1799–1804.

    CAS  PubMed  Google Scholar 

  22. Luft, J. H. (1961) Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409–414.

    Article  CAS  PubMed  Google Scholar 

  23. Glauert, A. M. and Glauert, R. H. (1958) Araldite as an embedding medium for electron microscopy. J. Biophys. Biochem. Cytol. 4, 191–194.

    Article  CAS  PubMed  Google Scholar 

  24. Spurr, A. R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43.

    Article  CAS  PubMed  Google Scholar 

  25. Trump, B. F., Smuckler, E. A., and Benditt, E. P. (1961) A method for staining epoxy sections for light microscopy. J. Ultrastruct. Res. 5, 343–348.

    Article  CAS  PubMed  Google Scholar 

  26. Causton, B. E. (1986) Does the embedding chemistry interact with tissue? in The Science of Biological Specimen Preparation 1985 (Müller, M., Becker, R. P., Boyde, A., and Wolosewick, J. J., eds.), SEM Inc., AMF O’Hare (Chicago), pp. 209–214.

    Google Scholar 

  27. Causton, B. E. (1984) The choice of resins for electron immunocytochemistry, in Immunolabelling for Electron Microscopy (Polak, J. M. and Varndell, I. M., eds.), Elsevier Science Publishers, Amsterdam, pp. 29–36.

    Google Scholar 

  28. Van Harreveld, A., J., C. and Malhotra, S. K. (1965) A study of extracellular space in central nervous tissue by freeze-substitution. J. Cell Biol. 25, 117–137.

    Article  Google Scholar 

  29. Steinbrecht, R. A. and Müller, M. (1987) Freeze-substitution and freeze-drying, in Cryotechniques in Biological Electron Microscopy (Steinbrecht, R. A. and Zierold, K., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 149–172.

    Google Scholar 

  30. Humbel, B. M. and Schwarz, H. (1989) Freeze-substitution for immunochemistry, in Immuno-Gold Labeling in Cell Biology (Verkleij, A. J. and Leunissen, J. L. M., eds.), CRC Press, Boca Raton, pp. 115–134.

    Google Scholar 

  31. Humbel, B., Marti, T., and Müller, M. (1983) Improved structural preservation by combining freeze substitution and low temperature embedding. Beitr. Elektronenmikroskop. Direktabb. Oberfl. 16, 585–594.

    Google Scholar 

  32. Riehle, U. (1968) Über die Vitrifizierung von verdünnter wässriger Lösungen. ETH Diss Nr 4271, Federal Institute of Technology (ETH), Zürich.

    Google Scholar 

  33. Riehle, U. and Hoechli, M. (1973) The theory and technique of high pressure freezing, in Freeze-Etching Techniques and Applications (Benedetti, E. L. and Favard, P., eds.), Société Française de Microscopie Electronique, Paris, pp. 31–61.

    Google Scholar 

  34. Müller, M. and Moor, H. (1984) Cryofixation of thick specimens by high pressure freezing, in Science of Biological Specimen Preparation 1983 (Revel, J. P., Barnard, T. B., and Haggis, G. H., eds.), SEM Inc., AMF O’Hare (Chicago), pp. 131–138.

    Google Scholar 

  35. Studer, D., Michel, M., and Müller, M. (1989) High pressure freezing comes of age. Scanning Microsc. 3, Suppl. 253–268.

    CAS  Google Scholar 

  36. Müller, M. (1992) The integrating power of cryofixation-based electron microscopy in biology. Acta Microsc. 1, 37–44.

    Google Scholar 

  37. Hermann, R., Schwarz, H., and Müller, M. (1991) High precision immunoscanning electron microscopy using Fab fragments coupled to ultra-small colloidal gold. J. Struct. Biol. 107, 38–47.

    Article  CAS  PubMed  Google Scholar 

  38. Humbel, B. M. and Biegelmann, E. (1992) A preparation protocol for post-embedding immunoelectron microscopy of Dictyostelium discoideum cells with monoclonal antibodies. Scanning Microsc. 6, 817–825.

    CAS  Google Scholar 

  39. Albrecht, U., Seulberger, H., Schwarz, H., and Risau, W. (1990) Correlation of blood-brain barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Res. 535, 49–61.

    Article  CAS  PubMed  Google Scholar 

  40. Bierkamp, C., Schwarz, H., Huber, O., and Kemler, R. (1999) Desmosomal localization of β-catenin in the skin of plakoglobin null-mutant mice. Development 126, 371–381.

    CAS  PubMed  Google Scholar 

  41. Fialka, I., Schwarz, H., Reichmann, E., Oft, M., Busslinger, M., and Beug, H. (1996) The estrogen-dependent c-junER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol. 132, 1115–1132.

    Article  CAS  PubMed  Google Scholar 

  42. Hoffmann, W. and Schwarz, H. (1996) Ependymins: meningeal-derived extracellular matrix proteins at the blood-brain barrier. Int. Rev. Cytol. 165, 121–158.

    Article  CAS  PubMed  Google Scholar 

  43. Kurth, T., Schwarz, H., Schneider, S., and Hausen, P. (1996) Fine structural immunocytochemistry of catenins in amphibian and mammalian muscle. Cell Tissue Res. 286, 1–12.

    Article  CAS  PubMed  Google Scholar 

  44. Wilsch-Bräuninger, M., Schwarz, H., and Nüsslein-Volhard, C. (1997) A spongelike structure involved in the association and transport of maternal products during Drosophila oogenesis. J. Cell Biol. 139, 817–829.

    Article  PubMed  Google Scholar 

  45. Nica, G., Herzog, W., Sonntag, C., Nowak, M., Schwarz, H., Zapata, A. G., and Hammerschmidt, M. (2006) Eya1 is required for lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis. Develop. Biol. 292, 189–204.

    Article  CAS  PubMed  Google Scholar 

  46. Tobler, M. and Freiburghaus, A. U. (1990) Occupational risks of (meth) acrylate compounds in embedding media for electron microscopy. J. Microsc. (Oxford) 160, 291–298.

    CAS  Google Scholar 

  47. Beug, H., von Kirchbach, A., Döderlein, G., Conscience, J.-F., and Graf, T. (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18, 375–390.

    Article  CAS  PubMed  Google Scholar 

  48. Longin, A., Souchier, C., French, M., and Bryon, P.-A. (1993) Comparison of anti-fading agents used in fluorescence microscopy: Image analysis and laser confocal microscopy study. J. Histochem. Cytochem. 41, 1833–1840.

    CAS  PubMed  Google Scholar 

  49. Langanger, G., De Mey, J., and Adam, H. (1983) 1,4-Diazobizyklo-(2.2.2)-Oktan (DABCO) verzögert das Ausbleichen von Immunfluoreszenzpräparaten. Mikroskopie 40, 237–241.

    CAS  PubMed  Google Scholar 

  50. Johnson, G. D. and de C. Nogueira Araujo, G. M. (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J. Immunol. Meth. 43, 349–350.

    Google Scholar 

  51. Giloh, H. and Sedat, J. W. (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217, 1252–1255.

    Article  CAS  PubMed  Google Scholar 

  52. Van Bergen en Henegouwen, P. M. P. and Leunissen, J. L. M. (1986) Controlled growth of colloidal gold particles and implications for labelling efficiency. Histochemistry 85, 81–87.

    Google Scholar 

  53. Birrell, G. B., Hedberg, K. K., and Griffith, O. H. (1987) Pitfalls of immunogold labeling: analysis by light microscopy, transmission electron microscopy, and photoelectron microscopy. J. Histochem. Cytochem. 35, 843–853.

    CAS  PubMed  Google Scholar 

  54. Griffiths, G. (1993) Fine Structure Immunocytochemistry, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  55. Ebersold, H. R., Cordier, J. L., and Lüthy, P. (1981) Bacterial mesosomes: method dependent artifacts. Arch. Microbiol. 130, 19–22.

    Article  CAS  PubMed  Google Scholar 

  56. Kaneko, Y. and Walther, P. (1995) Comparison of ultrastructure of germinating pea leaves prepared by high-pressure freezing-freeze substitution and conventional chemical fixation. J. Electron Microsc. 44, 104–109.

    CAS  Google Scholar 

  57. Studer, D., Michel, M., Wohlwend, M., Hunziker, E. B., and Buschmann, M. D. (1995) Vitrification of articular cartilage by high-pressure freezing. J. Microsc. (Oxford) 179, 321–332.

    CAS  Google Scholar 

  58. Studer, D., Hennecke, H., and Müller, M. (1992) High-pressure freezing of soya-bean nodules leads to an improved preservation of ultrastructure. Planta 188, 155–163.

    Article  Google Scholar 

  59. Fernández-Morán, H. (1960) Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid Helium II. Ann. N. Y. Acad. Sci. 85, 689–713.

    Article  PubMed  Google Scholar 

  60. Costello, M. J., Fetter, R., and Corless, J. M. (1983) Optimum conditions for the plunge freezing of sandwiched samples, in Science of Biological Specimen Preparation, 1983 (Revel, J. P., Barnard, T. B., and Haggis, G. H., eds.), SEM Inc., AMF O’Hare (Chicago), pp. 105–115.

    Google Scholar 

  61. Müller, M., Meister, N., and Moor, H. (1980) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie 36, 129–140.

    PubMed  Google Scholar 

  62. Van Harreveld, A. and Crowell, J. (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat. Rec. 149, 381–386.

    Article  Google Scholar 

  63. Bachmann, L. and Schmitt, W. W. (1971) Improved cryofixation applicable to freeze etching. Proc. Natl. Acad. Sci. USA 68, 2149–2152.

    Article  CAS  PubMed  Google Scholar 

  64. Moor, H. (1987) Theory and practice of high pressure freezing, in Cryotechniques in Biological Electron Microscopy (Steinbrecht, R. A. and Zierold, K., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 175–191.

    Google Scholar 

  65. Echlin, P. (1992) Low-Temperature Microscopy and Analysis, Plenum Press, New York, London.

    Google Scholar 

  66. Zierold, K. and Steinbrecht, R. A. (eds.) (1987) Cryotechniques in Biological Electron Microscopy, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  67. Robards, A. W. and Sleytr, U. B. (eds.) (1985) Low Temperature Methods in Biological Electron Microscopy Vol. 10. Pract. Methods Electron Microsc. (Glauert, A. M., ed.), Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  68. Hayat, M. A. (2000) Principles and Techniques of Electron Microscopy. Biological Applications, 4th ed, Cambridge University Press, Cambridge.

    Google Scholar 

  69. Villiger, W. (1991) Lowicryl resins, in Colloidal Gold: Principles, Methods, and Applications, Vol. 3 (Hayat, M. A., ed.), Academic Press, San Diego, pp. 59–71.

    Google Scholar 

  70. Weibull, C., Villiger, W., and Carlemalm, E. (1984) Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy. J. Microsc. (Oxford) 134, 213–216.

    CAS  Google Scholar 

  71. Hunziker, E. B. and Herrmann, W. (1987) In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing. J. Histochem. Cytochem. 35, 647–655.

    CAS  PubMed  Google Scholar 

  72. Verkleij, A. J., Humbel, B., Studer, D., and Müller, M. (1985) ‘Lipidic particle’ systems as visualized by thin-section electron microscopy. Biochim. Biophys. Acta 812, 591–495.

    Article  CAS  Google Scholar 

  73. Schwarz, H. and Humbel, B. M. (1989) Influence of fixatives and embedding media on immunolabelling of freeze-substituted cells. Scanning Microsc. 3, Suppl. 57–64.

    CAS  Google Scholar 

  74. Meissner, D. H. and Schwarz, H. (1990) Improved cryofixation and freeze-substitution of embryonic quail retina: A TEM study on ultrastructural preservation. J. Electron Microsc. Tech. 14, 348–356.

    Article  CAS  PubMed  Google Scholar 

  75. Müller, M., Marti, T., and Kriz, S. (1980) Improved structural preservation by freeze substitution, in Proc. 7th Eur. Congr. Electron Microsc. (Brederoo, P. and de Priester, W., eds.), 2, 720–721.

    Google Scholar 

  76. Grünfelder, C. G., Engstler, M., Weise, F., Schwarz, H., Stierhof, Y.-D., Boshart, M., and Overath, P. (2002) Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic 3, 547–559.

    Article  PubMed  Google Scholar 

  77. Humbel, B. and Müller, M. (1986) Freeze substitution and low temperature embedding, in The Science of Biological Specimen Preparation 1985 (Müller, M., Becker, R. P., Boyde, A., and Wolosewick, J. J., eds.), SEM Inc., AMF O’Hare (Chicago), pp. 175–183.

    Google Scholar 

  78. Monaghan, P. and Robertson, D. (1990) Freeze-substitution without aldehyde or osmium fixatives: ultrastructure and implications for immunocytochemistry. J. Microsc. (Oxford) 158, 355–363.

    CAS  Google Scholar 

  79. Tonning, A., Helms, S., Schwarz, H., Uv, A. E., and Moussian, B. (2006) Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development 133, 331–341.

    Article  CAS  PubMed  Google Scholar 

  80. Moussian, B., Tang, E., Tonning, A., Helms, S., Schwarz, H., Nüsslein-Volhard, C., and Uv, A. E. (2006) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133, 163–171.

    Article  CAS  PubMed  Google Scholar 

  81. Romeis, B. (1989) deMikroskopische Technik, Urban & Schwarzenberg, München, Wien, Baltimore.

    Google Scholar 

  82. Huang, W. M., Gibson, S. J., Facer, P., Gu, J., and Polak, J. (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating. Histochemistry 77, 275–279.

    Article  CAS  PubMed  Google Scholar 

  83. Rodriguez, J. and Deinhardt, F. (1960) Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology 12, 316–317.

    Article  CAS  PubMed  Google Scholar 

  84. Lennette, D. A. (1978) An improved mounting medium for immunofluorescence microscopy. Am. J. Clin. Pathol. 69, 647–648.

    CAS  PubMed  Google Scholar 

  85. Venable, J. H. and Coggeshall, R. (1965) A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408.

    Article  CAS  PubMed  Google Scholar 

  86. Kärgel, E., Menzel, R., Honeck, H., Vogel, F., Böhmer, A., and Schunck, W. H. (1996) Candida maltosa NADPH-cytochrome P450 reductase: cloning of a full-length cDNA, heterologous expression in Saccharomyces cerevisiae and function of the N-terminal region for membrane anchoring and proliferation of the endoplasmic reticulum. Yeast 12, 333–348.

    Article  PubMed  Google Scholar 

  87. Behrman, E. J. (1983) The chemistry of osmium tetroxide fixation in The Science of Biological Specimen Preparation 1983 (Revel, J. P., Barnard, T. B., and Haggis, G. H., eds.), SEM Inc., AMF O’Hare (Chicago), pp. 1–5.

    Google Scholar 

  88. Maupin, P. and Pollard, T. D. (1983) Improved preservation and staining of HeLa cell actin filaments, clatrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J. Cell Biol. 96, 51–62.

    Article  CAS  PubMed  Google Scholar 

  89. Tanaka, K. and Mitsushima, A. (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J. Microsc. (Oxford) 133, 213–222.

    CAS  Google Scholar 

  90. Humbel, B. M., Konomi, M., Takagi, T., Kamasawa, N., Ishijima, S. A., and Osumi, M. (2001) In situ localization of β-glucans in the cell wall of Schizosaccharomyces pombe. Yeast 18, 433–444.

    Article  CAS  PubMed  Google Scholar 

  91. White, D. L., Andrews, S. B., Faller, J. W., and Barrnett, R. J. (1976) The chemical nature of osmium tetroxide fixation and staining of membranes by x-ray photoelectron spectroscopy. Biochim. Biophys. Acta 436, 577–592.

    Article  CAS  PubMed  Google Scholar 

  92. Danscher, G. (1981) Localization of gold in biological tissue. A photochemical method for light and electron microscopy. Histochemistry 71, 1–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Schwarz, H., Humbel, B.M. (2007). Correlative Light and Electron Microscopy Using Immunolabeled Resin Sections. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology™, vol 369. Humana Press. https://doi.org/10.1007/978-1-59745-294-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-294-6_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-573-6

  • Online ISBN: 978-1-59745-294-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics