Skip to main content
Log in

A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Studies of human genetic variation predominantly use short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) but Insertion deletion polymorphisms (Indels) are being increasingly explored. They combine desirable characteristics of other genetic markers, especially the possibility of being analysed using short amplicon strategies, which increases the ease of analysis, contributing to justify their interest in population and forensic genetics. After the advent of autosomal and uniparental genomes (mtDNA and Y chromosome), these fields of research are also focusing on the X chromosome, given its special transmission pattern. The X chromosome markers brought new insights into the history of modern human populations and also proved useful in forensic kinship investigations, namely in deficient relationship cases and in cases where autosomes are uninformative. This work describes an X-Indel multiplex system amplifying 32 biallelic markers in one single PCR. The multiplex includes X-Indels shown to be polymorphic in the major human population groups and follows a short amplicon strategy. The set was applied in the genetic characterization of sub-Saharan African, European and East Asian population samples and revealed high forensic efficiency, as measured by the accumulated power of discrimination (0.9999990 was the lowest value in males and 0.999999999998 was the highest in females) and mean exclusion chance varied between 0.998 and 0.9996 in duos and between 0.99997 and 0.999998 in trios. Finally, a segregation analysis was performed using trio constellations of father–mother–daughters in order to address the transmission pattern and assess mutation rates of this type of markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933. doi:10.1038/35057149

    Article  PubMed  CAS  Google Scholar 

  2. Weber JL, David D, Heil J, Fan Y, Zhao C, Marth G (2002) Human diallelic insertion/deletion polymorphisms. Am J Hum Genet 71(4):854–862. doi:10.1086/342727

    Article  PubMed  Google Scholar 

  3. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16(9):1182–1190. doi:10.1101/gr.4565806

    Article  PubMed  CAS  Google Scholar 

  4. Pereira R, Phillips C, Alves C, Amorim A, Carracedo A, Gusmão L (2009) A new multiplex for human identification using insertion/deletion polymorphisms. Electrophoresis 30(21):3682–3690. doi:10.1002/elps.200900274

    Article  PubMed  CAS  Google Scholar 

  5. Yang N, Li H, Criswell LA, Gregersen PK, Alarcon-Riquelme ME, Kittles R, Shigeta R, Silva G, Patel PI, Belmont JW, Seldin MF (2005) Examination of ancestry and ethnic affiliation using highly informative diallelic DNA markers: application to diverse and admixed populations and implications for clinical epidemiology and forensic medicine. Hum Genet 118(3–4):382–392. doi:10.1007/s00439-005-0012-1

    Article  PubMed  Google Scholar 

  6. Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW (2005) Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet 1(6):e70. doi:10.1371/journal.pgen.0010070

    Article  PubMed  Google Scholar 

  7. Bastos-Rodrigues L, Pimenta JR, Pena SD (2006) The genetic structure of human populations studied through short insertion–deletion polymorphisms. Ann Hum Genet 70(Pt 5):658–665. doi:10.1111/j.1469-1809.2006.00287.x

    Article  PubMed  Google Scholar 

  8. Ribeiro-Rodrigues EM, Santos NP, Ribeiro-dos-Santos AK, Pereira R, Amorim A, Gusmão L, Zago MA, Santos SE (2009) Assessing interethnic admixture using an X-linked insertion–deletion multiplex. Am J Hum Biol 21(5):707–709. doi:10.1002/ajhb.20950

    Article  PubMed  Google Scholar 

  9. Edelmann J, Hering S, Augustin C, Szibor R (2009) Indel polymorphisms—An additional set of markers on the X-chromosome. Forensic Sci Int Genet Supplement Series 2(1):510–512. doi:10.1016/j.fsigss.2009.08.148

    Article  Google Scholar 

  10. Santos NP, Ribeiro-Rodrigues EM, Ribeiro-dos-Santos AK, Pereira R, Gusmão L, Amorim A, Guerreiro JF, Zago MA, Matte C, Hutz MH, Santos SE (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion–deletion (INDEL) ancestry-informative marker (AIM) panel. Hum Mutat 31(2):184–190. doi:10.1002/humu.21159

    Article  PubMed  CAS  Google Scholar 

  11. Schaffner SF (2004) The X chromosome in population genetics. Nat Rev Genet 5(1):43–51. doi:10.1038/nrg1247

    Article  PubMed  CAS  Google Scholar 

  12. Casto AM, Li JZ, Absher D, Myers R, Ramachandran S, Feldman MW (2010) Characterization of X-linked SNP genotypic variation in globally distributed human populations. Genome Biol 11(1):R10. doi:10.1186/gb-2010-11-1-r10

    Article  PubMed  Google Scholar 

  13. Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Krause D (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117(2):67–74. doi:10.1007/s00414-002-0352-5

    PubMed  CAS  Google Scholar 

  14. Szibor R, Plate I, Edelmann J, Hering S, Kuhlisch E, Michael M, Krause D (2003) Chromosome X haplotyping in deficiency paternity testing principles and case report. Int Congr Ser 1239:815–820. doi:10.1016/s0531-5131(02)00569-1

    Article  CAS  Google Scholar 

  15. Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1(2):93–99. doi:10.1016/j.fsigen.2007.03.003

    Article  PubMed  Google Scholar 

  16. Gomes I, Prinz M, Pereira R, Meyers C, Mikulasovich RS, Amorim A, Carracedo A, Gusmão L (2007) Genetic analysis of three US population groups using an X-chromosomal STR decaplex. Int J Legal Med 121(3):198–203. doi:10.1007/s00414-006-0146-2

    Article  PubMed  Google Scholar 

  17. Tomas C, Sanchez JJ, Barbaro A, Brandt-Casadevall C, Hernandez A, Ben Dhiab M, Ramon M, Morling N (2008) X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans). BMC Evol Biol 8:75. doi:10.1186/1471-2148-8-75

    Article  PubMed  Google Scholar 

  18. Freitas NS, Resque RL, Ribeiro-Rodrigues EM, Guerreiro JF, Santos NP, Ribeiro-dos-Santos AK, Santos SE (2010) X-linked insertion/deletion polymorphisms: forensic applications of a 33-markers panel. Int J Legal Med 124(6):589–593. doi:10.1007/s00414-010-0441-9

    Article  PubMed  Google Scholar 

  19. Tomas C, Sanchez JJ, Castro JA, Borsting C, Morling N (2010) Forensic usefulness of a 25 X-chromosome single-nucleotide polymorphism marker set. Transfusion (Paris) 50(10):2258–2265. doi:10.1111/j.1537-2995.2010.02696.x

    CAS  Google Scholar 

  20. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20(6):1004–1006, 1008–1010

    PubMed  CAS  Google Scholar 

  21. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  22. Desmarais D, Zhong Y, Chakraborty R, Perreault C, Busque L (1998) Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene (HUMARA). J Forensic Sci 43(5):1046–1049

    PubMed  CAS  Google Scholar 

  23. Pereira R, Gomes I, Amorim A, Gusmão L (2007) Genetic diversity of 10 X chromosome STRs in northern Portugal. Int J Legal Med 121(3):192–197. doi:10.1007/s00414-006-0144-4

    Article  PubMed  Google Scholar 

  24. Gomes I, Alves C, Maxzud K, Pereira R, Prata MJ, Sánchez-Diz P, Carracedo A, Amorim A, Gusmão L (2007) Analysis of 10 X-STRs in three African populations. Forensic Sci Int Genet 1(2):208–211. doi:10.1016/j.fsigen.2007.01.001

    Article  PubMed  Google Scholar 

  25. Gusmão L, Sánchez-Diz P, Alves C, Gomes I, Zarrabeitia MT, Abovich M, Atmetlla I, Bobillo C, Bravo L, Builes J, Caine L, Calvo R, Carvalho E, Carvalho M, Cicarelli R, Catelli L, Corach D, Espinoza M, Garcia O, Malaghini M, Martins J, Pinheiro F, Joao Porto M, Raimondi E, Riancho JA, Rodriguez A, Rodriguez Cardozo B, Schneider V, Silva S, Tavares C, Toscanini U, Vullo C, Whittle M, Yurrebaso I, Carracedo A, Amorim A (2009) A GEP-ISFG collaborative study on the optimization of an X-STR decaplex: data on 15 Iberian and Latin American populations. Int J Legal Med 123(3):227–234. doi:10.1007/s00414-008-0309-4

    Article  PubMed  Google Scholar 

  26. Phillips C, Fondevila M, Garcia-Magarinos M, Rodriguez A, Salas A, Carracedo A, Lareu MV (2008) Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers. Forensic Sci Int Genet 2(3):198–204. doi:10.1016/j.fsigen.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  27. Pereira R, Phillips C, Alves C, Amorim A, Carracedo A, Gusmão L (2009) Insertion/deletion polymorphisms: a multiplex assay and forensic applications. Forensic Sci Int Genet Suppl Ser 2(1):513–515. doi:10.1016/j.fsigss.2009.09.005

    Article  Google Scholar 

  28. Weir BS (1992) Independence of VNTR alleles defined as fixed bins. Genetics 130(4):873–887

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported through PhD grants to R.P. (SFRH/BD/30039/2006) and V.P. (SFRH/BD/70881/2010) awarded by the Portuguese Foundation for Science and Technology (FCT) and co-financed by the European Social Fund (Human Potential Thematic Operational Programme). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT. The assistance of Fundación Botín is also acknowledged with appreciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Gusmão.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table SM1

Haplotype frequencies for MID357-MID356 and MID3690-MID3719-MID2089 (PDF 60 kb)

Table SM2

Statistical parameters indicative of forensic efficiency obtained for the 32 X-Indel set: Power of Discrimination (PD) and Mean Exclusion Chance (MEC) (PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, R., Pereira, V., Gomes, I. et al. A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR. Int J Legal Med 126, 97–105 (2012). https://doi.org/10.1007/s00414-011-0593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-011-0593-2

Keywords

Navigation