Skip to main content

Advertisement

Log in

Artificial and engineered chromosomes: developments and prospects for gene therapy

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

At the gene therapy session of the ICCXV Chromosome Conference (2004), recent advances in the construction of engineered chromosomes and de novo human artificial chromosomes were presented. The long-term aims of these studies are to develop vectors as tools for studying genome and chromosome function and for delivering genes into cells for therapeutic applications. There are two primary advantages of chromosome-based vector systems over most conventional vectors for gene delivery. First, the transferred DNA can be stably maintained without the risks associated with insertion, and second, large DNA segments encompassing genes and their regulatory elements can be introduced, leading to more reliable transgene expression. There is clearly a need for safe and effective gene transfer vectors to correct genetic defects. Among the topics discussed at the gene therapy session and the main focus of this review are requirements for de novo human artificial chromosome formation, assembly of chromatin on de novo human artificial chromosomes, advances in vector construction, and chromosome transfer to cells and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alazami AM, Mejía JE, Larin Monaco Z (2004) Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable. Genomics 83:844–851

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov I, Kazakov A, Tumeneva I, Shepelev V, Yurov Y (2001) Alpha-satellite DNA of primates: old and new families. Chromosoma 110:253–266

    PubMed  CAS  Google Scholar 

  • Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714

    Article  PubMed  Google Scholar 

  • Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14:359–368

    Article  PubMed  CAS  Google Scholar 

  • Athanasopoulos T, Graham IR, Foster H, Dickson G (2004) Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 11(Suppl 1):S109–S121

    Article  PubMed  CAS  Google Scholar 

  • Auriche C, Carpani D, Conese M, Caci E, Zegarra-Moran O, Donini P, Ascenzioni F (2002) Functional human CFTR produced by a stable minichromosome. EMBO Rep 3:862–868

    Article  PubMed  CAS  Google Scholar 

  • Barnett MA, Buckle VJ, Evans EP, Porter AC, Rout D, Smith AG, Brown WR (1993) Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res 21:27–36

    PubMed  CAS  Google Scholar 

  • Basu J, Stromberg G, Compitello G, Willard HF, Van Bokkelen G (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33:587–596

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3:730–739

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    Article  PubMed  CAS  Google Scholar 

  • Brown W, Dafhnis-Calas F, Malla S, Xu Z, Smith M (2004) Assaying centromere assembly using engineered mini-chromosomes and novel site-specific recombinases. Chromosome Res 12:L116

    Google Scholar 

  • Cheung W, Abdulrazzak H, Kotzamanis G, Huxley C (2004) Development of large episomal vectors carrying large genomic regions for gene therapy. Chromosome Res 12(Suppl 1):L118

    Google Scholar 

  • Cheung W, Abdulrazzak H, Kotzamanis G, Huxley C (2005) Development of large episomal vectors carrying large genomic regions for gene therapy. Chromosomes Today 15:15.12

    Google Scholar 

  • Choo KHA (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores. From epigenetics to mitotic checkpoint signaling. Cell 112:407–421

    Article  PubMed  CAS  Google Scholar 

  • Co DO, Borowski AH, Leung JD, van der Kaa J, Hengst S, Platenburg GJ, Pieper FR, Perez CF, Jirik FR, Drayer JI (2000) Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Res 8:183–191

    Article  PubMed  CAS  Google Scholar 

  • Conese M, Auriche C, Ascenzioni F (2004) Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther 11:1735–1741

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  PubMed  CAS  Google Scholar 

  • deJong G, Telenius AH, Telenius H, Perez CF, Drayer JI, Hadlaczky G (1999) Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry 35:129–133

    Article  PubMed  CAS  Google Scholar 

  • Dickson G (2004) Approaches to genetic therapy for neuromuscular and cardiovascular diseases: gene addition and gene correction strategies. Chromosome Res 12:L113

    Google Scholar 

  • Ebersole TA, Ross A, Clark E, McGill N, Schindelhauer D, Cooke H, Grimes B (2000) Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum Mol Genet 9:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K (2004) The roles of histone modifications and small RNA in centromere function. Chromosome Res 12:535–542

    Article  PubMed  CAS  Google Scholar 

  • Farr C, Fantes J, Goodfellow P, Cooke H (1991) Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci U S A 88:7006–7010

    PubMed  CAS  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294:96–100

    Article  PubMed  CAS  Google Scholar 

  • Glover DJ, Lipps HJ, Jans DA (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 6:299–310

    Article  PubMed  CAS  Google Scholar 

  • Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P (1998) Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16:862–866

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Schindelhauer D, McGill NI, Ross A, Ebersole TA, Cooke HJ (2001) Stable gene expression from a mammalian artificial chromosome. EMBO Rep 2:910–914

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Warburton PE, Farr CJ (2002a) Chromosome engineering: prospects for gene therapy. Gene Ther 9:713–718

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Rhoades AA, Willard HF (2002b) Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 5:798–805

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Babcock J, Rudd MK, Chadwick B, Willard HF (2004) Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 5:R89

    Article  PubMed  Google Scholar 

  • Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97:5995–6000

    Article  PubMed  CAS  Google Scholar 

  • Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505

    Article  PubMed  CAS  Google Scholar 

  • Guiducci C, Ascenzioni F, Auriche C, Piccolella E, Guerrini AM, Donini P (1999) Use of a human minichromosome as a cloning and expression vector for mammalian cells. Hum Mol Genet 8:1417–1424

    Article  PubMed  CAS  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 116:3327–3338

    Article  PubMed  CAS  Google Scholar 

  • Henning KA, Novotny EA, Compton ST, Guan XY, Liu PP, Ashlock MA (1999) Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci U S A 96:592–597

    Article  PubMed  CAS  Google Scholar 

  • Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296:2181–2183

    Article  PubMed  CAS  Google Scholar 

  • Huxley C, Kotzamanis G, Cheung W, Abdulrazzak H, Perez-Luz S (2004) Mammalian artificial chromosomes (MACs) as gene therapy vectors. Chromosome Res 12(Suppl 1):L112

    Google Scholar 

  • Huxley C, Kotzamanis G, Cheung W, Abdulrazzak H, Perez-Luz S (2005) Mammalian artificial chromosomes (MACs) as gene therapy vectors. Chromosomes Today 15:15.11

    Google Scholar 

  • Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Inagaki H, Nagata K, Morita M, Ichinose H, Okazaki T (2002) Generation of human artificial chromosomes expressing naturally controlled guanosine triphosphate cyclohydrolase I gene. Genes Cells 7:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Kakeda M, Hiratsuka M, Nagata K, Kuroiwa Y, Kakitani M, Katoh M, Oshimura M, Tomizuka K (2005) Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene Ther 12:852–856

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Ayabe F, Norikane S, Okada T, Masumoto H, Horike S, Shirayoshi Y, Oshimura M (2004a) Construction of a novel human artificial chromosome vector for gene delivery. Biochem Biophys Res Commun 321:280–290

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Ayabe F, Norikane S, Hoshiya H, Ren X, Suda T, Okita C, Oshimura M (2004b) Construction of a novel human artificial chromosome (HAC) and its use for gene delivery. Chromosome Res 12:PO:08:18

    Google Scholar 

  • Kazuki Y, Shinohara T, Tomizuka K, Katoh M, Ohguma A, Ishida I, Oshimura M (2001) Germline transmission of a transferred human chromosome 21 fragment in transchromosomal mice. J Hum Genet 46:600–603

    Article  PubMed  CAS  Google Scholar 

  • Kotzamanis G, Huxley C (2004) Recombining overlapping BACs into a single larger BAC. BMC Biotechnol 4:1

    Article  PubMed  Google Scholar 

  • Kotzamanis G, Cheung W, Abdulrazzak H, Gifford-Garner J, Huxley C (2004) Construction of mammalian artificial chromosome vectors for the expression of therapeutic genes by recombineering. Chromosome Res 12:PO:08:19

    Google Scholar 

  • Kotzamanis G, Cheung W, Abdulrazzak H, Perez-Luz S, Howe S, Cooke H, Huxley C (2005) Construction of human artificial chromosome vectors by recombineering. Gene 351:29–38. DOI 10.1016/j.gene.2005.01.017

    Article  PubMed  CAS  Google Scholar 

  • Kouprina N, Ebersole T, Koriabine M, Pak E, Rogozin IB, Katoh M, Oshimura M, Ogi K, Peredelchuk M, Solomon G, Brown W, Barrett JC, Larionov V (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res 31:922–934

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Tomizuka K, Shinohara T, Kazuki Y, Yoshida H, Ohguma A, Yamamoto T, Tanaka S, Oshimura M, Ishida I (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 18:1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Tomizuka K, Ishida I (2004) Use of natural and artificial chromosome vectors for animal transgenesis. Methods Mol Biol 240:207–225

    PubMed  CAS  Google Scholar 

  • Laner A, Schwarz T, Christan S, Schindelhauer D (2004) Suitability of a CMV/EGFP cassette to monitor stable expression from human artificial chromosomes but not transient transfer in the cells forming viable clones. Cytogenet Genome Res 107:9–13

    Article  PubMed  CAS  Google Scholar 

  • Larin Z, Mejía JE (2002) Advances in human artificial chromosome technology. Trends Genet 18:313–319

    Article  PubMed  CAS  Google Scholar 

  • Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  • Lim HN, Farr CJ (2004) Chromosome-based vectors for mammalian cells: an overview. Methods Mol Biol 240:167–186

    PubMed  CAS  Google Scholar 

  • Lindenbaum M, Perkins E, Csonka E, Fleming E, Garcia L, Greene A, Gung L, Hadlaczky G, Lee E, Leung J, MacDonald N, Maxwell A, Mills K, Monteith D, Perez CF, Shellard J, Stewart S, Stodola T, Vandenborre D, Vanderbyl S, Ledebur Jr HC (2004) A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res 32:e172

    Article  PubMed  CAS  Google Scholar 

  • Magin-Lachmann C, Kotzamanis G, D'Aiuto L, Wagner E, Huxley C (2003) Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1—new vectors for in vitro and in vivo delivery. BMC Biotechnol 3:2

    Article  PubMed  Google Scholar 

  • Masumoto H (2004) DNA and chromatin structures required for de novo formation of a human artificial chromosome. Chromosome Res 12:L114

    Article  Google Scholar 

  • Masumoto H, Ikeno M, Nakano M, Okazaki T, Grimes B, Cooke H, Suzuki N (1998) Assay of centromere function using a human artificial chromosome. Chromosoma 107:406–416

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Nakano M, Ohzeki J (2004) The role of CENP-B and α-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12:543–556

    Article  PubMed  CAS  Google Scholar 

  • Mee PJ, Shen MH, Smith AG, Brown WR (2003) An unpaired mouse centromere passes consistently through male meiosis and does not significantly compromise spermatogenesis. Chromosoma 112:183–189

    Article  PubMed  Google Scholar 

  • Mejía JE, Monaco AP (1997) Retrofitting vectors for Escherichia coli-based artificial chromosomes (PACs and BACs) with markers for transfection studies. Genome Res 7:179–186

    PubMed  Google Scholar 

  • Mejía JE, Larin Z (2000) The assembly of large BACs by in vivo recombination. Genomics 70:165–170

    Article  PubMed  CAS  Google Scholar 

  • Mejía JE, Willmott A, Levy E, Earnshaw WC, Larin Z (2001) Functional complementation of a genetic deficiency with human artificial chromosomes. Am J Hum Genet 69:315–326

    Article  PubMed  Google Scholar 

  • Mejía JE, Alazami A, Willmott A, Marschall P, Levy E, Earnshaw WC, Larin Z (2002) Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 79:297–304

    Article  PubMed  CAS  Google Scholar 

  • Mills W, Critcher R, Lee C, Farr CJ (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 8:751–761

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234

    Article  PubMed  CAS  Google Scholar 

  • Monteith DP, Leung JD, Borowski AH, Co DO, Praznovszky T, Jirik FR, Hadlaczky G, Perez CF (2004) Pronuclear microinjection of purified artificial chromosomes for generation of transgenic mice: pick-and-inject technique. Methods Mol Biol 240:227–242

    PubMed  CAS  Google Scholar 

  • Moralli D, Vagnarelli P, Bensi M, De Carli L, Raimondi E (2001) Insertion of a loxP site in a size-reduced human accessory chromosome. Cytogenet Cell Genet 94:113–120

    Article  PubMed  CAS  Google Scholar 

  • Moralli D, Simpson K, Wade-Martins R, Assenberg M, Larin-Monaco Z (2004) Delivery of artificial chromosomes using HSV-1 amplicons. Chromosome Res 12:PO:08:20

    Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Okamoto Y, Ohzeki JI, Masumoto H (2003) Epigenetic assembly of centromeric chromatin at ectopic α-satellite sites on human chromosomes. J Cell Sci 116:4021–4034

    Article  PubMed  CAS  Google Scholar 

  • Narayanan K, Warburton PE (2003) DNA modification and functional delivery into human cells using Escherichia coli DH10B. Nucleic Acids Res 31:e51

    Article  PubMed  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775

    Article  PubMed  CAS  Google Scholar 

  • Otsuki A, Tahimic CG, Tomimatsu N, Katoh M, Chen DJ, Kurimasa A, Oshimura M (2005) Construction of a novel expression system on a human artificial chromosome. Biochem Biophys Res Commun 329:1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A 88:3734–3738

    PubMed  CAS  Google Scholar 

  • Perez C, Vanderbyl S, Stewart S, Macdonald N, Stodola T, Mills K, Lee E, Lee G, Telenius A, Ledebur Jr H (2004) The ACE system: a chromosome engineering and delivery technology for cell-based gene therapy. Chromosome Res 12:L119

    Google Scholar 

  • Perez C, Vanderbyl S, Stewart S, Macdonald N, Stodola T, Mills K, Lee E, Lee G, Telenius A, Ledebur Jr H (2005) The ACE system: a chromosome engineering and delivery technology for cell-based gene therapy. Chromosomes Today 15:15.13

    Google Scholar 

  • Perez-Luz S, Huxley C (2004) Construction of episomal vectors carrying the intact human factor VIII gene for gene therapy. Chromosome Res 12:PO:08:21

    Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Rudd MK, Willard HF (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20:529–533

    Article  PubMed  CAS  Google Scholar 

  • Rudd MK, Mays RB, Schwartz S, Willard HF (2003) Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol Cell Biol 23(21):7689–7697

    Article  PubMed  CAS  Google Scholar 

  • Saffery R, Choo KH (2002) Strategies for engineering human chromosomes with therapeutic potential. J Gene Med 4:5–13

    Article  PubMed  Google Scholar 

  • Saffery R, Wong LH, Irvine DV, Bateman MA, Griffiths B, Cutts SM, Cancilla MR, Cendron AC, Stafford AJ, Choo KH (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc Natl Acad Sci U S A 98:5705–5710

    Article  PubMed  CAS  Google Scholar 

  • Saffery R, Sumer H, Hassan S, Wong LH, Craig JM, Todokoro K, Anderson M, Stafford A, Choo KHA (2003) Transcription within a functional human centromere. Mol Cell 12:509–516

    Article  PubMed  CAS  Google Scholar 

  • Schindelhauer D, Cooke HJ (1997) Efficient combination of large DNA in vitro: in gel site specific recombination (IGSSR) of PAC fragments containing α satellite DNA and the human HPRT gene locus. Nucleic Acids Res 25:2241–2243

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  PubMed  CAS  Google Scholar 

  • Shen MH, Mee PJ, Nichols J, Yang J, Brook F, Gardner RL, Smith AG, Brown WR (2000) A structurally defined mini-chromosome vector for the mouse germ line. Curr Biol 10:31–34

    Article  PubMed  CAS  Google Scholar 

  • Shen MH, Yang JW, Yang J, Pendon C, Brown WR (2001) The accuracy of segregation of human mini-chromosomes varies in different vertebrate cell lines, correlates with the extent of centromere formation and provides evidence for a trans-acting centromere maintenance activity. Chromosoma 109:524–535

    PubMed  CAS  Google Scholar 

  • Shinohara T, Tomizuka K, Takehara S, Yamauchi K, Katoh M, Ohguma A, Ishida I, Oshimura M (2000) Stability of transferred human chromosome fragments in cultured cells and in mice. Chromosome Res 8:713–725

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T, Tomizuka K, Miyabara S, Takehara S, Kazuki Y, Inoue J, Katoh M, Nakane H, Iino A, Ohguma A, Ikegami S, Inokuchi K, Ishida I, Reeves RH, Oshimura M (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down's syndrome. Hum Mol Genet 10:1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ (2002) Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 21:5269–5280

    Article  PubMed  CAS  Google Scholar 

  • Spence J, Mills W, Farr C (2004) The behaviour of human X centromere-based minichromosomes in human, mouse and chicken cell lines. Chromosome Res 12:PO:08:21

    Google Scholar 

  • Sullivan KF (2001) A solid foundation: functional specialization of centromeric chromatin. Curr Opin Genet Dev 11:182–188

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, Hayasaka M, Hanaoka K, Oshimura M, Ishida I (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S, Sato K, Oshimura M, Ishida I (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727

    Article  PubMed  CAS  Google Scholar 

  • Verma IM, Weitzman MD (2004) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738. DOI 10.1146/annurev.biochem.74.050304.091637

    Article  CAS  Google Scholar 

  • Voet T, Vermeesch J, Carens A, Durr J, Labaere C, Duhamel H, David G, Marynen P (2001) Efficient male and female germline transmission of a human chromosomal vector in mice. Genome Res 11:124–136

    Article  PubMed  CAS  Google Scholar 

  • Voet T, Schoenmakers E, Carpentier S, Labaere C, Marynen P (2003) Controlled transgene dosage and PAC-mediated transgenesis in mice using a chromosomal vector. Genomics 82:596–605

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–626

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Waye JS (1987a) Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3:192–198

    Article  CAS  Google Scholar 

  • Willard HF, Waye JS (1987b) Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25:207–214

    Article  PubMed  CAS  Google Scholar 

  • Wong LH, Saffery R, Anderson MA, Earle E, Quach JM, Stafford AJ, Fowler KJ, Choo KH (2005) Analysis of mitotic and expression properties of human neocentromere-based transchromosomes in mice. J Biol Chem 280:3954–3962

    Article  PubMed  CAS  Google Scholar 

  • Yang JW, Pendon C, Yang J, Haywood N, Chand A, Brown WR (2000) Human mini-chromosomes with minimal centromeres. Hum Mol Genet 9:1891–1902

    Article  PubMed  CAS  Google Scholar 

  • Zeng K, de las Heras JI, Ross A, Yang J, Cooke H, Shen MH (2004) Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells. Chromosoma 113:84–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christine Farr for providing the image of the human X minichromosome, Mitsuo Oshimura and Motonobu Katoh for providing the image of the human 21 minichromosome and for sharing unpublished data, Daniela Moralli for assistance in preparation of the figures and comments on the manuscript, Roger Slee for helpful suggestions and the participants of the ICCXV International Chromosome Conference for stimulating discussions. We apologize for being unable to cite all relevant primary papers due to space limitations. Research in the lab of BRG is funded by INGEN, Indiana University School of Medicine (IUSM) Cytogenetics Division, and an IUSM Pilot Funding Grant. The Indiana Genomics Initiative (INGEN) of Indiana University is supported in part by Lilly Endowment, Inc. Research in Z.L.M.'s group was supported in part by the Wellcome Trust and the Dystrophic Epidermolysis Bullosa Research Association, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda R. Grimes.

Additional information

Communicated by D. Griffin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimes, B.R., Monaco, Z.L. Artificial and engineered chromosomes: developments and prospects for gene therapy. Chromosoma 114, 230–241 (2005). https://doi.org/10.1007/s00412-005-0017-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0017-5

Keywords

Navigation