Skip to main content
Log in

Further evidence for the association between a polymorphism in the promoter region of SLC6A3/DAT1 and ADHD: findings from a sample of adults

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2016

Abstract

The dopamine transporter (SLC6A3/DAT1) plays a key role in the regulation of dopaminergic neurotransmission and is the major site of action for methylphenidate, a first-line medication for attention deficit hyperactivity disorder (ADHD). Most genetic association studies with ADHD have investigated a 40-bp variable number of tandem repeats (VNTR) polymorphism in the 3′-untranslated region (UTR) of the DAT1, but these investigations have reported heterogeneous findings. The few studies focused on the 5′ region have reported promising results. Despite rs2652511 not being included, nor having any proxy SNP available in GWAS, the few candidate gene studies that analyzed it suggested an association with ADHD and schizophrenia. Here, we analyzed the −839 C/T (rs2652511) promoter variant and the 3′-UTR and intron 8 (Int8) VNTR polymorphisms in 522 adults with ADHD and 628 blood donor controls. The diagnostic procedures followed the DSM-IV criteria. A significant association was detected (P = 0.002) between the rs2652511 C-allele with ADHD. In addition, the 6-repeat allele of Int8 VNTR was associated with higher inattention scores (P = 0.034). The haplotype analysis including DAT1 3′-UTR and Int8 VNTR polymorphisms did not reveal associations with ADHD susceptibility or severity dimensions. These findings extend to adult samples previous findings from children samples on the role of the rs2652511 polymorphism in the promoter region of DAT1 as a risk factor for ADHD susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  2. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948

    Article  PubMed  Google Scholar 

  3. Simon V, Czobor P, Bálint S, Mészáros A, Bitter I (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 194:204–211

    Article  PubMed  Google Scholar 

  4. Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P (2001) The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 11:449–455

    Article  CAS  PubMed  Google Scholar 

  5. Franke B, Faraone SV, Asherson P, Buitelaar J, Bau CH, Ramos-Quiroga JA, Mick E, Grevet EH, Johansson S, Haavik J, Lesch KP, Cormand B, Reif A (2012) The genetics of attention deficit hyperactivity disorder in adults, a review. Mol Psychiatry 17:960–987

    Article  CAS  PubMed  Google Scholar 

  6. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Sham PC, Owen MJ, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15:2276–2284

    Article  CAS  PubMed  Google Scholar 

  8. Brookes KJ, Xu X, Anney R, Franke B, Zhou K, Chen W, Banaschewski T, Buitelaar J, Ebstein R, Eisenberg J, Gill M, Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Sonuga-Barke E, Steinhausen HC, Taylor E, Faraone SV, Asherson P (2008) Association of ADHD with genetic variants in the 5′-region of the dopamine transporter gene: evidence for allelic heterogeneity. Am J Med Genet B Neuropsychiatr Genet 147B:1519–1523

    Article  CAS  PubMed  Google Scholar 

  9. Asherson P, Brookes K, Franke B, Chen W, Gill M, Ebstein RP, Buitelaar J, Banaschewski T, Sonuga-Barke E, Eisenberg J, Manor I, Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Steinhausen HC, Faraone SV (2007) Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am J Psychiatry 164:674–677

    Article  PubMed  Google Scholar 

  10. Brüggemann D, Sobanski E, Alm B, Schubert T, Schmalzried H, Philipsen A, Breen G, Becker T, Georgi A, Skowronek MH, Schulze TG, Treutlein J, Rietschel M (2007) No association between a common haplotype of the 6 and 10-repeat alleles in intron 8 and the 3′UTR of the DAT1 gene and adult attention deficit hyperactivity disorder. Psychiatr Genet 17:121

    Article  PubMed  Google Scholar 

  11. Franke B, Hoogman M, Arias Vasquez A, Heister JG, Savelkoul PJ, Naber M, Scheffer H, Kiemeney LA, Kan CC, Kooij JJ, Buitelaar JK (2008) Association of the dopamine transporter (SLC6A3/DAT1) gene 9-6 haplotype with adult ADHD. Am J Med Genet B Neuropsychiatr Genet 147B:1576–1579

    Article  CAS  PubMed  Google Scholar 

  12. Franke B, Vasquez AA, Johansson S, Hoogman M, Romanos J, Boreatti-Hümmer A, Heine M, Jacob CP, Lesch KP, Casas M, Ribasés M, Bosch R, Sánchez-Mora C, Gómez-Barros N, Fernàndez-Castillo N, Bayés M, Halmøy A, Halleland H, Landaas ET, Fasmer OB, Knappskog PM, Heister AJ, Kiemeney LA, Kooij JJ, Boonstra AM, Kan CC, Asherson P, Faraone SV, Buitelaar JK, Haavik J, Cormand B, Ramos-Quiroga JA, Reif A (2010) Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology 35:656–664

    Article  CAS  PubMed  Google Scholar 

  13. Spencer TJ, Biederman J, Madras BK, Faraone SV, Dougherty DD, Bonab AA, Stöber G, Sprandel J, Jabs B, Pfuhlmann B, Möller-Ehrlich K, Knapp M (2006) Family-based study of markers at the 5′-flanking region of the human dopamine transporter gene reveals potential association with schizophrenic psychoses. Eur Arch Psychiatry Clin Neurosci 256:422–427

    Article  Google Scholar 

  14. Rubie C, Schmidt F, Knapp M, Sprandel J, Wiegand C, Meyer J, Jungkunz G, Riederer P, Stober G (2001) The human dopamine transporter gene: the 5′-flanking region reveals five diallelic polymorphic sites in a Caucasian population sample. Neurosci Lett 297:125–128

    Article  CAS  PubMed  Google Scholar 

  15. Greenwood TA, Kelsoe JR (2003) Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 82:511–520

    Article  CAS  PubMed  Google Scholar 

  16. Genro JP, Zeni C, Polanczyk GV, Roman T, Rohde LA, Hutz MH (2007) A promoter polymorphism (−839 C > T) at the dopamine transporter gene is associated with attention deficit/hyperactivity disorder in Brazilian children. Am J Med Genet B Neuropsychiatr Genet 144B:215–219

    Article  CAS  PubMed  Google Scholar 

  17. Genro JP, Polanczyk GV, Zeni C, Oliveira AS, Roman T, Rohde LA, Hutz MH (2008) A common haplotype at the dopamine transporter gene 5′ region is associated with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147B:1568–1575

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan E, Fein D, Morris R, Delis DC (1991) WAIS-R: manual. Psychological corporation, San Antonio

    Google Scholar 

  19. Rovaris DL, Mota NR, de Azeredo LA, Cupertino RB, Bertuzzi GP, Polina ER, Contini V, Kortmann GL, Vitola ES, Grevet EH, Grassi-Oliveira R, Callegari-Jacques SM, Bau CH (2013) MR and GR functional SNPs may modulate tobacco smoking susceptibility. J Neural Transm [Epub ahead of print]

  20. Kortmann GL, Contini V, Bertuzzi GP, Mota NR, Rovaris DL, Paixão-Côrtes VR, de Lima LL, Grevet EH, Salgado CA, Vitola ES, Rohde LA, Belmonte-de-Abreu P, Bau CH (2013) The role of a mineralocorticoid receptor gene functional polymorphism in the symptom dimensions of persistent ADHD. Eur Arch Psychiatry Clin Neurosci 263:181–188

    Article  PubMed  Google Scholar 

  21. Salzano FM, Bortolini MC (2002) The evolution and genetics of Latin American populations. Cambridge University Press, Cambridge

    Google Scholar 

  22. Zembrzuski VM, Callegari-Jacques SM, Hutz MH (2006) Application of an African Ancestry Index as a genomic control approach in a Brazilian population. Ann Hum Genet 70:822–828

    Article  CAS  PubMed  Google Scholar 

  23. Santos NP, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AK, Pereira R, Gusmão L, Amorim A, Guerreiro JF, Zago MA, Matte C, Hutz MH, Santos SE (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum Mutat 31:184–190

    Article  CAS  PubMed  Google Scholar 

  24. Hutchison KE, Stallings M, McGeary J, Bryan A (2004) Population stratification in the candidate gene study: fatal threat or red herring? Psychol Bull 130:66–79

    Article  PubMed  Google Scholar 

  25. Mercadante MT, Asbahar F, Rosário MC, Ayres AM, Karman L, Ferrari MC, Assumpcão FB, Miguel EC (1995) K-SADS, entrevista semiestruturada para diagnóstico em psiquiatria da infância, versão epidemiológica. FMUSP, São Paulo

    Google Scholar 

  26. Grevet EH, Bau CH, Salgado CA, Ficher A, Victor MM, Garcia C, de Sousa NO, Nerung L, Belmonte-De-Abreu P (2005) Interrater reliability for diagnosis in adults of attention deficit hyperactivity disorder and oppositional defiant disorder using K-SADS-E. Arq Neuropsiquiatr 63:307–310

    Article  PubMed  Google Scholar 

  27. First MB, Spitzer RL, Gibbon M, Williams JB (1998) Structured clinical interview for DSM-IV axis I disorders patient edition (SCID-I/P, version 2.0, 8/98 revision). Biometric Research Department, New York

    Google Scholar 

  28. First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for DSM-IV-TR Axis I disorders, research version, patient edition (SCID-I/P). Biometrics Research, New York State Psychiatric Institute, New York

  29. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33

    PubMed  Google Scholar 

  30. Wechsler D (1981) WAIS-R—manual for the Wechsler adult intelligence scale-revised. Psychological Corporation, Cleveland

    Google Scholar 

  31. Swanson JM (1992) School-based assessments and interventions for ADD students. KC Publishing, Irvine

    Google Scholar 

  32. Contini V, Victor MM, Cerqueira CC, Polina ER, Grevet EH, Salgado CA, Karam RG, Vitola ES, Belmonte-de-Abreu P, Bau CH (2011) Adrenergic α2A receptor gene is not associated with methylphenidate response in adults with ADHD. Eur Arch Psychiatry Clin Neurosci 261:205–211

    Article  PubMed  Google Scholar 

  33. Lahiri DK, Nurnberger J Jr (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roman T, Schmitz M, Polanczyk G, Eizirik M, Rohde LA, Hutz MH (2001) Attention-deficit hyperactivity disorder: a study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am J Med Genet 105:471–478

    Article  CAS  PubMed  Google Scholar 

  35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  37. Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ (1999) Characterization of the 5′-flanking region of the human dopamine transporter gene. Mol Brain Res 74:167–174

    Article  CAS  PubMed  Google Scholar 

  38. Michelhaugh SK, Vaitkevicius H, Wang J, Bouhamdan M, Krieg AR, Walker JL, Mendiratta V, Bannon MJ (2005) Dopamine neurons express multiple isoforms of the nuclear receptor nurr1 with diminished transcriptional activity. J Neurochem 95:1342–1350

    Article  CAS  PubMed  Google Scholar 

  39. Drgon T, Lin Z, Wang GJ, Fowler J, Pablo J, Mash DC, Volkow N, Uhl GR (2006) Common human 5′ dopamine transporter (SLC6A3) haplotypes yield varying expression levels in vivo. Cell Mol Neurobiol 26:875–889

    Article  CAS  PubMed  Google Scholar 

  40. Stöber G, Sprandel J, Jabs B, Pfuhlmann B, Möller-Ehrlich K, Knapp M (2006) Family-based study of markers at the 5′-flanking region of the human dopamine transporter gene reveals potential association with schizophrenic psychoses. Eur Arch Psychiatry Clin Neurosci 256:422–427

    Article  PubMed  Google Scholar 

  41. Huang SY, Chen HK, Ma KH, Shy MJ, Chen JH, Lin WC, Lu RB (2010) Association of promoter variants of human dopamine transporter gene with schizophrenia in Han Chinese. Schizophr Res 116:68–74

    Article  PubMed  Google Scholar 

  42. Schumacher-Schuh AF, Francisconi C, Altmann V, Monte TL, Callegari-Jacques SM, Rieder CR, Hutz MH (2013) Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson’s disease. Int J Neuropsychopharmacol 30:1–8

    Google Scholar 

  43. Shumay E, Fowler JS, Volkow ND (2010) Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity. PLoS ONE 5:e11067

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang GJ, Volkow ND, Wigal T, Kollins SH, Newcorn JH, Telang F, Logan J, Jayne M, Wong CT, Han H, Fowler JS, Zhu W, Swanson JM (2013) Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder. PLoS ONE 8:e63023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shumay E, Chen J, Fowler JS, Volkow ND (2011) Genotype and ancestry modulate brain’s DAT availability in healthy humans. PLoS ONE 6:e22754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Biederman J, Mick E, Faraone SV, Braaten E, Doyle A, Spencer T, Wilens TE, Frazier E, Johnson MA (2002) Influence of gender on attention deficit hyperactivity disorder in children referred to a psychiatric clinic. Am J Psychiatry 159:36–42

    Article  PubMed  Google Scholar 

  47. Grevet EH, Bau CH, Salgado CA, Fischer AG, Kalil K, Victor MM, Garcia CR, Sousa NO, Rohde LA, Belmonte-de-Abreu P (2006) Lack of gender effects on subtype outcomes in adults with attention-deficit/hyperactivity disorder: support for the validity of subtypes. Eur Arch Psychiatry Clin Neurosci 256:311–319

    Article  PubMed  Google Scholar 

  48. Kebir O, Joober R (2011) Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: a review of genetic association studies. Eur Arch Psychiatry Clin Neurosci 261:583–594

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by grants from ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq), ‘Coordenação de Aperfeiçoamento de Pessoal de Nível Superior’ (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul’ (FAPERGS), ‘Departamento de Ciência e Tecnologia/Programa de Pesquisa para o Sistema Único de Saúde’ (DECIT/PPSUS), and ‘Programa de Apoio a Núcleos de Excelência’ (PRONEX). Dr Francine Z. Marques is supported by National Health and Medical Research Council (APP1052659) and National Heart Foundation (PF12M6785) co-shared Early Career Fellowships.

Conflict of interest

The ADHD Program received unrestricted educational and research support from the following pharmaceutical companies in the last 3 years: Abbott, Bristol-Myers Squibb, Eli Lilly, Janssen-Cilag, Novartis, and Shire. Dr Belmonte-de-Abreu is on the speakers’ bureau or is a consultant for Janssen-Cilag and Bristol-Myers Squibb. Dr Rohde was on the speakers’ bureau and/or acted as consultant for Eli Lilly, Janssen-Cilag, Novartis, and Shire in the last 3 years. He also received travel awards (air tickets + hotel) for taking part in psychiatric meetings from Novartis and Janssen-Cilag in 2010 and authorship royalties from Oxford Press and ArtMed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claiton H. D. Bau.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00406-016-0739-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Azeredo, L.A., Rovaris, D.L., Mota, N.R. et al. Further evidence for the association between a polymorphism in the promoter region of SLC6A3/DAT1 and ADHD: findings from a sample of adults. Eur Arch Psychiatry Clin Neurosci 264, 401–408 (2014). https://doi.org/10.1007/s00406-014-0486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-014-0486-8

Keywords

Navigation