Skip to main content

Advertisement

Log in

Common Human 5′ Dopamine Transporter (SLC6A3) Haplotypes Yield Varying Expression Levels In Vivo

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Individuals display significant differences in their levels of expression of the dopamine transporter (DAT; SLC6A3). These differences in DAT are strong candidates to contribute to individual differences in motor, mnemonic and reward functions. To identify “cis”-acting genetic mechanisms for these individual differences, we have sought variants in 5′ aspects of the human DAT gene and identified the haplotypes that these variants define.

2. We report (i) significant relationships between 5′ DAT haplotypes and human individual differences in ventral striatal DAT expression assessed in vivo using [11C] cocaine PET and (ii) apparent confirmation of these results in studies of DAT expression in postmortem striatum using [3H] carboxyflurotropane binding.

3. These observations support the idea that cis-acting variation in 5′ aspects of the human DAT/SLC6A3 locus contributes to individual differences in levels of DAT expression in vivo. 5′ DAT variation is thus a good candidate to contribute to individual differences in a number of human phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Biederman J., and Faraone, S. V. (2002). Current concepts on the neurobiology of Attention-Deficit/Hyperactivity Disorder. J. Atten. Disord. 6(Suppl. 1):S7–S16.

    PubMed  Google Scholar 

  • Cheon, K. A., Ryu, Y. H., Kim, J. W., and Cho, D. Y. (2005). The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur. Neuropsychopharmacol. 15:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, S. L., Smith, G. S., Logan, J., Brodie, J. D., Simkowitz, P., MacGregor, R. R., Fowler, J. S., Volkow, N. D., and Wolf, A. P. (1993). Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects. Proc. Natl. Acad. Sci. U.S.A. 90:11816–11820.

    Article  PubMed  CAS  Google Scholar 

  • Donovan, D. M., Miner, L. L., Perry, M. P., Revay, R. S., Sharpe, L. G., Przedborski, S., Kostic, V., Philpot, R. M., Kirstein, C. L., Rothman, R. B., Schindler, C. W., and Uhl, G. R. (1999). Cocaine reward and MPTP toxicity: Alteration by regional variant dopamine transporter overexpression. Brain Res. Mol. Brain Res. 73:37–49.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty, D. D., Bonab, A. A., Spencer, T. J., Rauch, S. L., Madras, B. K., and Fischman, A. J. (1999). Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., Macgregor, R. R., Hitzemann, R., Logan, J., Bendriem, B., Gatley, S. J., et al. (1989). Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4:371–377.

    Article  PubMed  CAS  Google Scholar 

  • Frost, J. J., Rosier, A. J., Reich, S. G., Smith, J. S., Ehlers, M. D., Snyder, S. H., Ravert, H. T., and Dannals, R. F. (1993). Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Ann. Neurol. 34:423–431.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov, R. R., Fumagalli, F., Jones, S. R., and Caron, M. G. (1997). Dopamine transporter is required for in vivo MPTP neurotoxicity: Evidence from mice lacking the transporter. J. Neurochem. 69:1322–1325.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, T. A., Alexander, M., Keck, P. E., McElroy, S., Sadovnick, A. D., Remick, R. A., and Kelsoe, J. R. (2001). Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am. J. Med. Genet. 105:145–151.

    Article  PubMed  CAS  Google Scholar 

  • Inoue-Murayama, M., Adachi, S., Mishima, N., Mitani, H., Takenaka, O., Terao, K., Hayasaka, I., Ito, S., and Murayama, Y. (2002). Variation of variable number of tandem repeat sequences in the 3′-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci. Lett. 334:206–210.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, A., Mah, C., Johnson, R. A., Cunningham, C. L., Phillips, T. J., Crabbe, J. C., Eshleman, A. J., and Belknap, J. K. (2001). Mapping genes that regulate density of dopamine transporters and correlated behaviors in recombinant inbred mice. J. Pharmacol. Exp. Ther. 298:634–643.

    PubMed  CAS  Google Scholar 

  • Jennings, D. L., Seibyl, J. P., Oakes, D., Eberly, S., Murphy, J., and Marek, K. (2004). (123I) beta-CIT and single-photon emission computed tomographic imaging vs. clinical evaluation in Parkinsonian syndrome: Unmasking an early diagnosis. Arch. Neurol. 61:1224–1229.

    Article  PubMed  Google Scholar 

  • Kirley, A., Hawi, Z., Daly, G., McCarron, M., Mullins, C., Millar, N., Waldman, I., Fitzgerald, M., and Gill, M. (2002). Dopaminergic system genes in ADHD: Toward a biological hypothesis. Neuropsychopharmacology 27:607–619.

    PubMed  CAS  Google Scholar 

  • Kirley, A., Lowe, N., Hawi, Z., Mullins, C., Daly, G., Waldman, I., McCarron, M., O'Donnell, D., Fitzgerald, M., and Gill, M. (2003). Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 121:50–54.

    Article  PubMed  Google Scholar 

  • Krause, K. H., Dresel, S. H., Krause, J., la Fougere, C., and Ackenheil, M. (2003). The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 27:605–613.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Z., and Uhl, G. R. (2003). Human dopamine transporter gene variation: Effects of protein coding variants V55A and V382A on expression and uptake activities. Pharmacogenomics J. 3:159–168.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Z., Zhang, P. W., Zhu, X., Melgari, J. M., Huff, R., Spieldoch, R. L., and Uhl, G. R. (2003). Phosphatidylinositol 3-kinase, protein kinase C, and MEK1/2 kinase regulation of dopamine transporters (DAT) require N-terminal DAT phosphoacceptor sites. J. Biol. Chem. 278:20162–20170.

    Article  PubMed  CAS  Google Scholar 

  • Logan, J., Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., MacGregor, R. R., Hitzemann, R., Bendriem, B., Gatley, S. J., et al. (1990). Graphical analysis of reversible radioligand binding from time–activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10:740–747.

    PubMed  CAS  Google Scholar 

  • Logan, J., Volkow, N. D., Fowler, J. S., Wang, G. J., Fischman, M. W., Foltin, R. W., Abumrad, N. N., Vitkun, S., Gatley, S. J., Pappas, N., Hitzemann, R., and Shea, C. E. (1997). Concentration and occupancy of dopamine transporters in cocaine abusers with [11C]cocaine and PET. Synapse 27:347–356.

    Article  PubMed  CAS  Google Scholar 

  • Madras, B. K., Miller, G. M., and Fischman, A. J. (2002). The dopamine transporter: relevance to attention deficit hyperactivity disorder (ADHD). Behav. Brain Res. 130:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, D., Gelernter, J., Abi-Dargham, A., van Dyck, C. H., Kegeles, L., Innis, R. B., and Laruelle, M. (2001). The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 24:553–560.

    Article  PubMed  CAS  Google Scholar 

  • Mash, D. C., Pablo, J., Ouyang, Q., Hearn, W. L., and Izenwasser, S. (2002). Dopamine transport function is elevated in cocaine users. J. Neurochem. 81:292–300.

    Article  PubMed  CAS  Google Scholar 

  • Michelhaugh, S. K., Fiskerstrand, C., Lovejoy, E., Bannon, M. J., and Quinn, J. P. (2001). The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J. Neurochem. 79:1033–1038.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G. M., and Madras, B. K. (2002). Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol. Psychiatry 7:44–55.

    Article  PubMed  CAS  Google Scholar 

  • Morice, E., Denis, C., Giros, B., and Nosten-Bertrand, M. (2004). Phenotypic expression of the targeted null-mutation in the dopamine transporter gene varies as a function of the genetic background. Eur. J. Neurosci. 20:120–126.

    Article  PubMed  Google Scholar 

  • Niu, T., Qin, Z. S., Xu, X., and Liu, J. S. (2002). Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70:157–169.

    Article  PubMed  CAS  Google Scholar 

  • Purper-Ouakil, D., Wohl, M., Mouren, M. C., Verpillat, P., Ades, J., and Gorwood, P. (2005). Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatr. Genet. 15:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Rubie, C., Schmidt, F., Knapp, M., Sprandel, J., Wiegand, C., Meyer, J., Jungkunz, G., Riederer, P., and Stober, G. (2001). The human dopamine transporter gene: the 5′-flanking region reveals five diallelic polymorphic sites in a Caucasian population sample. Neurosci Lett. 297:125–128.

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti, P., Brownschidle, L. A., Granneman, J. G., and Bannon, M. J. (1999). Characterization of the 5′-flanking region of the human dopamine transporter gene. Brain Res. Mol. Brain Res. 74:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Sora, I., Hall, F. S., Andrews, A. M., Itokawa, M., Li, X. F., Wei, H. B., Wichems, C., Lesch, K. P., Murphy, D. L., and Uhl, G. R. (2001). Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc. Natl. Acad. Sci. U.S.A. 98:5300–5305.

    Article  PubMed  CAS  Google Scholar 

  • Staley, J. K., Talbot, J. Z., Ciliax, B. J., Miller, G. W., Levey, A. I., Kung, M. P., Kung, H. F., and Mash, D. C. (1997). Radioligand binding and immunoautoradiographic evidence for a lack of toxicity to dopaminergic nerve terminals in human cocaine overdose victims. Brain Res. 747:219–229.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, B. G., Jentzen, J. M., Karch, S., Wetli, C. V., and Mash, D. C. (2004). National Association of Medical Examiners position paper on the certification of cocaine-related deaths. Am. J. Forensic Med. Pathol. 25:11–13.

    PubMed  Google Scholar 

  • Swanson, J., Posner, M., Fusella, J., Wasdell, M., Sommer, T., and Fan, J. (2001). Genes and attention deficit hyperactivity disorder. Curr. Psychiatry Rep. 3:92–100.

    PubMed  CAS  Google Scholar 

  • Uhl, G. R., Hall, F. S., and Sora, I. (2002). Cocaine, reward, movement and monoamine transporters. Mol. Psychiatry. 7:21–26.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbergh, D. J., Persico, A. M., and Uhl, G. R. (1992). A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic TaqI RFLPs. Brain Res. Mol. Brain Res. 15:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbergh, D. J., Thompson, M. D., Cook, E. H., Bendahhou, E., Nguyen, T., Krasowski, M. D., Zarrabian, D., Comings, D., Sellers, E. M., Tyndale, R. F., George, S. R., O'Dowd, B. F., and Uhl, G. R. (2000). Human dopamine transporter gene: Coding region conservation among normal, Tourette's disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Mol. Psychiatry 5:283–292.

    Article  PubMed  CAS  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., Ding, Y. S., Gur, R. C., Gatley, J., Logan, J., Moberg, P. J., Hitzemann, R., Smith, G., and Pappas, N. (1998). Parallel loss of presynaptic and postsynaptic dopamine markers in normal aging. Ann. Neurol. 44:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Wisor, J. P., Nishino, S., Sora, I., Uhl, G. H., Mignot, E., and Edgar, D. M. (2001). Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21:1787–1794.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge support from NIDA-IRP, support for imaging studies by NIDA grants DA09490-01, DA 7092-01 and DA00280, support for radiologand binding studies from DA 06227, assistance from Judith Hess, Felly Carillo and Donna Walther with human sample characterization and preparation, and NIAAA and COGA investigators for generously making DNAs from COGA participants available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Uhl.

Additional information

These authors contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drgon, T., Lin, Z., Wang, GJ. et al. Common Human 5′ Dopamine Transporter (SLC6A3) Haplotypes Yield Varying Expression Levels In Vivo . Cell Mol Neurobiol 26, 873–887 (2006). https://doi.org/10.1007/s10571-006-9014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9014-3

Key Words:

Navigation