Skip to main content

Advertisement

Log in

Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: a review of genetic association studies

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

As a relatively large body of research has been published up to now, it may be informative to explore whether the use of endophenotypes has produced consistent findings in attention-deficit hyperactivity disorder (ADHD). We reviewed the results of genetic studies investigating associations between putative susceptibility genes for ADHD and neuropsychological traits relevant for this disorder. A PubMed database search identified 47 studies. Most of them (n = 36) examined a single candidate gene, while seven studies examined two or three genes and only four studies examined 10 genes or more. The most investigated genes were DRD4, DAT1, COMT, MAOA, and DBH. Regarding DRD4, association of high reaction time variability with the 7-R allele absence appears to be the most consistent result. Speed of processing, set shifting, and cognitive impulsiveness were less frequently investigated, but seem to be altered in the 7-R allele carriers. Regarding DAT1, majority of studies reported negative results indicating that this gene may have a modulating effect rather than direct influence on cognitive functioning. The other genes were investigated in fewer studies, and the reported findings need to be replicated. The principal methodological issues that could represent confounding factors and may explain conflicting results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J, Crosbie J, Ickowicz A et al (2004) Glutamate receptor, ionotropic, N-methyl D-aspartate 2A (GRIN2A) gene as a positional candidate for attention-deficit/hyperactivity disorder in the 16p13 region. Mol Psychiatry 9:494–499

    Article  PubMed  CAS  Google Scholar 

  2. Altink ME, Slaats-Willemse DI, Rommelse NN et al (2009) Effects of maternal and paternal smoking on attentional control in children with and without ADHD. Eur Child Adolesc Psychiatry 18:465–475

    Article  PubMed  Google Scholar 

  3. Andreou P, Neale BM, Chen WAI et al (2007) Reaction time performance in ADHD: improvement under fast-incentive condition and familial effects. Psychol Med 37:1703–1715

    Article  PubMed  Google Scholar 

  4. Arnsten AFT (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2:436–447

    Article  PubMed  CAS  Google Scholar 

  5. Asghari V, Sanyal S, Buchwaldt S et al (1995) Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 65:1157–1165

    Article  PubMed  CAS  Google Scholar 

  6. Baehne CG, Ehlis AC, Plichta MM et al (2009) Tph2 gene variants modulate response control processes in adult ADHD patients and healthy individuals. Mol Psychiatry 14:1032–1039

    Article  PubMed  CAS  Google Scholar 

  7. Barkley RA, Smith KM, Fisher M et al (2006) An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7 + , DBH Taq1 A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. Am J Med Genet B Neuropsychiatr Genet 141:487–498

    Google Scholar 

  8. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94

    Article  PubMed  CAS  Google Scholar 

  9. Bellgrove MA, Barry E, Johnson KA et al (2008) Spatial attentional bias as a marker of genetic risk, symptom severity, and stimulant response in ADHD. Neuropsychopharmacology 33:2536–2545

    Article  PubMed  CAS  Google Scholar 

  10. Bellgrove MA, Domschke K, Hawi Z et al (2005) The methionine allele of the COMT polymorphism impairs prefrontal cognition in children and adolescents with ADHD. Exp Brain Res 163:352–360

    Article  PubMed  CAS  Google Scholar 

  11. Bellgrove MA, Hawi Z, Gill M et al (2006) The cognitive genetics of attention deficit hyperactivity disorder (ADHD): sustained attention as a candidate phenotype. Cortex 42:838–845

    Article  PubMed  Google Scholar 

  12. Bellgrove MA, Hawi Z, Kirley A et al (2005) Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia 43:1847–1857

    Article  PubMed  Google Scholar 

  13. Bellgrove MA, Hawi Z, Lowe N et al (2005) DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): Effects of associated alleles at the VNTR and -521 SNP. Am J Med Genet B Neuropsychiatr Genet 136:81–86

    Google Scholar 

  14. Bellgrove MA, Johnson KA, Barry E et al (2009) Dopaminergic haplotype as a predictor of spatial inattention in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 66:1135–1142

    Article  PubMed  CAS  Google Scholar 

  15. Bellgrove MA, Mattingley JB, Hawi Z et al (2006) Impaired temporal resolution of visual attention and dopamine beta hydroxylase genotype in attention-deficit/hyperactivity disorder. Biol Psychiatry 60:1039–1045

    Article  PubMed  CAS  Google Scholar 

  16. Bidwell LC, Willcutt EG, Defries JC et al (2007) Testing for neuropsychological endophenotypes in siblings discordant for attention-deficit/hyperactivity disorder. Biol Psychiatry 62:991–998

    Article  PubMed  Google Scholar 

  17. Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366:237–248

    Article  PubMed  Google Scholar 

  18. Bitsakou P, Psychogiou L, Thompson M et al (2009) Delay aversion in attention deficit/hyperactivity disorder: an empirical investigation of the broader phenotype. Neuropsychologia 47:446–456

    Article  PubMed  Google Scholar 

  19. Bobb AJ, Addington AM, Sidransky E et al (2005) Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 134:67–72

    Google Scholar 

  20. Boonstra AM, Kooij JJ, Buitelaar JK et al (2008) An exploratory study of the relationship between four candidate genes and neurocognitive performance in adult ADHD. Am J Med Genet B Neuropsychiatr Genet 147:397–402

    PubMed  Google Scholar 

  21. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628

    PubMed  CAS  Google Scholar 

  22. Cheon KA, Ryu YH, Kim JW et al (2005) The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol 15:95–101

    Article  PubMed  CAS  Google Scholar 

  23. Cho SC, Kim JW, Kim BN et al (2008) Possible association of the alpha-2A-adrenergic receptor gene with response time variability in attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147:957–963

    Google Scholar 

  24. Cho SC, Kim JW, Kim BN et al (2008) No evidence of an association between norepinephrine transporter gene polymorphisms and attention deficit hyperactivity disorder: a family-based and case-control association study in a Korean sample. Neuropsychobiol 57:131–138

    Article  CAS  Google Scholar 

  25. Crosbie J, Schachar R (2001) Deficient inhibition as a marker for familial ADHD. Am J Psychiatry 158:1884–1890

    Article  PubMed  CAS  Google Scholar 

  26. DeYoung CG, Peterson JB, Séguin JR et al (2006) The dopamine D4 receptor gene and moderation of the association between externalizing behavior and IQ. Arch Gen Psychiatry 63:1410–1416

    Article  PubMed  CAS  Google Scholar 

  27. Dorval KM, Wigg KG, Crosbie J et al (2006) Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav 6:444–452

    PubMed  Google Scholar 

  28. Doyle AE, Faraone SV, Seidman LJ et al (2005) Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD. J Child Psychol Psychiatry 46:774–803

    Article  PubMed  Google Scholar 

  29. Doyle AE, Ferreira MA, Sklar PB et al (2008) Multivariate genomewide linkage scan of neurocognitive traits and ADHD symptoms: suggestive linkage to 3q13. Am J Med Genet B Neuropsychiatr Genet 147:1399–1411

    Google Scholar 

  30. Eisenberg J, Mei-Tal G, Steinberg A et al (1999) Haplotype relative risk study of catechol-Omethyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the High-enzyme activity Val allele with ADHD impulsive-hyperactive phenotype. Am J Med Genet B Neuropsychiatr Genet 88:497–502

    Article  CAS  Google Scholar 

  31. Faraone SV, Perlis RH, Doyle AE et al (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  32. Flint J, Munafò MR (2007) The endophenotype concept in psychiatric genetics. Psychol Med 37:163–180

    Article  PubMed  Google Scholar 

  33. Fried PA, Watkinson B, Gray R (2003) Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicol Teratol 25:427–436

    Article  PubMed  CAS  Google Scholar 

  34. Garris PA, Wightman RM (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci 14:442–450

    PubMed  CAS  Google Scholar 

  35. Gaspar P, Berger B, Febvret A et al (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271

    Article  PubMed  CAS  Google Scholar 

  36. Genro JP, Roman T, Zeni CP et al (2006) No association between dopaminergic polymorphisms and intelligence variability in attention-deficit/hyperactivity disorder. Mol Psychiatry 11:1066–1067

    Article  PubMed  CAS  Google Scholar 

  37. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    Article  PubMed  CAS  Google Scholar 

  38. Goos LM, Crosbie J, Payne S et al (2009) Validation and extension of the endophenotype model in ADHD patterns of inheritance in a family study of inhibitory control. Am J Psychiatry 166:711–717

    Article  PubMed  Google Scholar 

  39. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  40. Gau SS, Shang CY (2010) Executive functions as endophenotypes in ADHD: evidence from the Cambridge Neuropsychological Test Battery (CANTAB). J Child Psychol Psychiatry 51:838–849

    Article  PubMed  Google Scholar 

  41. Heinz A, Goldman D, Jones DW et al (2000) Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacol 22:133–139

    Article  CAS  Google Scholar 

  42. Johnson KA, Kelly SP, Robertson IH et al (2008) Absence of the 7-repeat variant of the DRD4 VNTR is associated with drifting sustained attention in children with ADHD but not in controls. Am J Med Genet B Neuropsychiatr Genet 147:927–937

    Google Scholar 

  43. Julvez J, Ribas-Fito N, Torrent M et al (2007) Maternal smoking habits and cognitive development of children at age 4 years in a population-based birth cohort. Int J Epidemiol 36:825–832

    Article  PubMed  Google Scholar 

  44. Karama S, Grizenko N, Sonuga-Barke EJS et al (2008) Dopamine transporter 3’UTR VNTR genotype is a marker of performance on executive function tasks in children with ADHD. BMC Psychiatry 8:45

    Article  PubMed  Google Scholar 

  45. Kebir O, Grizenko N, Sengupta S et al (2009) Verbal but not performance IQ is highly correlated to externalizing behavior in boys with ADHD carrying both DRD4 and DAT1 risk genotypes. Prog Neuropsychopharmacol Biol Psychiatry 33:939–944

    Article  PubMed  CAS  Google Scholar 

  46. Kebir O, Tabbane K, Sengupta S et al (2009) Candidate genes and neuropsychological phenotypes in children with ADHD: review of association studies. J Psychiatry Neurosci 34:88–101

    PubMed  Google Scholar 

  47. Kieling C, Genro JP, Hutz MH et al (2008) The −1021 C/T DBH polymorphism is associated with neuropsychological performance among children and adolescents with ADHD. Am J Med Genet B Neuropsychiatr Genet 147:485–490

    Google Scholar 

  48. Kieling C, Roman T, Doyle AE et al (2006) Association between DRD4 gene and performance of children with ADHD in a test of sustained attention. Biol Psychiatry 60:1163–1165

    Article  PubMed  CAS  Google Scholar 

  49. Kim JW, Kim BN, Cho SC (2006) The dopamine transporter gene and the impulsivity phenotype in attention deficit hyperactivity disorder: a case-control association study in a Korean sample. J Psychiatr Res 40:730–737

    Article  PubMed  Google Scholar 

  50. Kollins SH, Anastopoulos AD, Lachiewicz AM et al (2008) SNPs in dopamine D2 receptor gene (DRD2) and norepinephrine transporter gene (NET) are associated with continuous performance task (CPT) phenotypes in ADHD children and their families. Am J Med Genet B Neuropsychiatr Genet 147:1580–1588

    Google Scholar 

  51. Konrad K, Dempfle A, Friedel S et al (2010) Familiality and molecular genetics of attention networks in ADHD. Am J Med Genet B Neuropsychiatr Genet 153:148–158

    Google Scholar 

  52. Krause J, la Fougere C, Krause KH et al (2005) Influence of striatal dopamine transporter availability on the response to methylphenidate in adult patients with ADHD. Eur Arch Psychiatry Clin Neurosci 255:428–431

    Article  PubMed  Google Scholar 

  53. Krause KH, Dresel SH, Krause J et al (2003) The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27:605–613

    Article  PubMed  CAS  Google Scholar 

  54. Lachman HM, Papolos DF, Saito T et al (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenet 6:243–250

    Article  CAS  Google Scholar 

  55. Langley K, Marshall L, van der Bree M et al (2004) Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psychiatry 161:133–138

    Article  PubMed  Google Scholar 

  56. Lee J, Laurin N, Crosbie J et al (2007) Association study of the brain-derived neurotropic factor (BDNF) gene in attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 144:976–981

    Google Scholar 

  57. Loo S, Specter E, Smolen A et al (2003) Functional effects of the DAT1 polymorphism on EEG measures in ADHD. J Am Acad Child Adolesc Psychiatry 42:986–993

    Article  PubMed  Google Scholar 

  58. Loo SK, Rich EC, Ishii J et al (2008) Cognitive functioning in affected sibling pairs with ADHD: familial clustering and dopamine genes. J Child Psychol Psychiatry 49:950–957

    Article  PubMed  Google Scholar 

  59. Makkar R, Gomez L, Wigg KG et al (2007) The gene for synapsin III and attention-deficit hyperactivity disorder. Psychiatr Genet 17:109–112

    Article  PubMed  Google Scholar 

  60. Manor I, Corbex M, Eisenberg J et al (2004) Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am J Med Genet B Neuropsychiatr Genet 127:73–77

    Article  Google Scholar 

  61. Manor I, Laiba E, Eisenberg J et al (2008) Association between trypotphan hydroxylase 2, performance on a continuance performance test and response to methylphenidate in ADHD participants. Am J Med Genet B Neuropsychiatr Genet 147:1501–1508

    Google Scholar 

  62. Manor I, Tyano S, Eisenberg J et al (2002) The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Mol Psychiatry 7:790–794

    Article  PubMed  CAS  Google Scholar 

  63. Manor I, Tyano S, Mel E et al (2002) Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatry 7:626–632

    Article  PubMed  CAS  Google Scholar 

  64. Manuck SB, Flory JD, Ferrell RE et al (2000) A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 95:9–23

    Article  PubMed  CAS  Google Scholar 

  65. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827

    Article  PubMed  CAS  Google Scholar 

  66. Mill J, Caspi A, Williams BS et al (2006) Prediction of heterogeneity in intelligence and adult prognosis by genetic polymorphisms in the dopamine system among children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 63:462–469

    Article  PubMed  CAS  Google Scholar 

  67. Mills S, Langley K, Van der Bree et al (2004) No evidence of association between Catechol-Omethyltransferase (COMT) Val158Met genotype and performance on neuropsychological tasks in children with ADHD: A case-control study. BMC Med Genet 4:15

    Google Scholar 

  68. Moron JA, Brockington A, Wise RA et al (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395

    PubMed  CAS  Google Scholar 

  69. Oh KS, Shin DW, Oh GT et al (2003) Dopamine transporter genotype influences the attention deficit in Korean boys with ADHD. Yonsei Med J 44:787–792

    PubMed  CAS  Google Scholar 

  70. Polanczyk G, de Lima MS, Horta BL et al (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948

    Article  PubMed  Google Scholar 

  71. Primus RJ, Thurkauf A, Xu J et al (1997) Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94–1. J Pharmacol Exp Ther 282:1020–1027

    PubMed  CAS  Google Scholar 

  72. Prokopenko I, Langenberg C, Florez JC et al (2009) Variants in MTNR1B influence fasting glucose levels. Nat Genet 41:77–81

    Article  PubMed  CAS  Google Scholar 

  73. Qian QJ, Yang L, Wang YF et al (2010) Gene-gene interaction between COMT and MAOA potentially predicts the intelligence of attention-deficit hyperactivity disorder boys in China. Behav Genet 40:357–365

    Article  PubMed  Google Scholar 

  74. Rommelse NN, Altink ME, Arias-Vásquez A et al (2008) A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. Am J Med Genet B Neuropsychiatr Genet 147:1536–1546

    Google Scholar 

  75. Rommelse NN, Altink ME, Arias-Vásquez A et al (2008) Differential association between MAOA, ADHD and neuropsychological functioning in boys and girls. Am J Med Genet B Neuropsychiatr Genet 147:1524–1530

    Google Scholar 

  76. Rommelse NN, Altink ME, Fliers EA et al (2009) Comorbid problems in ADHD: degree of association, shared endophenotypes, and formation of distinct subtypes. Implications for a future DSM. J Abnorm Child Psychol 37:793–804

    Article  PubMed  Google Scholar 

  77. Rommelse NN, Altink ME, Martin NC et al (2008) Neuropsychological measures probably facilitate heritability research of ADHD. Arch Clin Neuropsychol 23:579–591

    Article  PubMed  Google Scholar 

  78. Rommelse NN, Altink ME, Martin NC et al (2008) Relationship between endophenotype and phenotype in ADHD. Behav Brain Funct 4:4

    Article  PubMed  CAS  Google Scholar 

  79. Rommelse NN, Altink ME, Oosterlaan J et al (2008) Speed, variability, and timing of motor output in ADHD: which measures are useful for endophenotypic research? Behav Genet 38:121–132

    Article  PubMed  Google Scholar 

  80. Rommelse NN, Altink ME, Oosterlaan J et al (2008) Support for an independent familial segregation of executive and intelligence endophenotypes in ADHD families. Psychol Med 38:1595–1606

    Article  PubMed  CAS  Google Scholar 

  81. Rommelse NN, Arias-Vásquez A, Altink ME et al (2008) Neuropsychological endophenotype approach to genome-wide linkage analysis identifies susceptibility loci for ADHD on 2q21.1 and 13q12.11. Am J Hum Genet 83:99–105

    Article  PubMed  CAS  Google Scholar 

  82. Rommelse NN, Oosterlaan J, Buitelaar J et al (2007) Time reproduction in children with ADHD and their nonaffected siblings. J Am Acad Child Adolesc Psychiatry 46:582–590

    Article  PubMed  Google Scholar 

  83. Rösler M, Retz W, Yaqoobi K et al (2009) Attention deficit/hyperactivity disorder in female offenders: prevalence, psychiatric comorbidity and psychosocial implications. Eur Arch Psychiatry Clin Neurosci 259:98–105

    Article  PubMed  Google Scholar 

  84. Ruano D, Abecasis GR, Glaser B et al (2010) Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. Am J Hum Genet 86:113–125

    Article  PubMed  CAS  Google Scholar 

  85. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279

    Article  PubMed  CAS  Google Scholar 

  86. Sergeant JA (2005) Modeling attention-deficit/hyperactivity disorder: a critical appraisal of the cognitive-energetic model. Biol Psychiatry 57:1248–1255

    Article  PubMed  Google Scholar 

  87. Sesack SR, Hawrylak VA, Guido MA et al (1998) Cellular and subcellular localization of the dopamine transporter in rat cortex. Adv Pharmacol 42:171–174

    Article  PubMed  CAS  Google Scholar 

  88. Slaats-Willemse D, Swaab-Barneveld H, de Sonneville L et al (2003) Deficient response inhibition as a cognitive endophenotype of ADHD. J Am Acad Child Adolesc Psychiatry 42:1242–1248

    Article  PubMed  Google Scholar 

  89. Sobanski E, Brüggemann D, Alm B et al (2007) Psychiatric comorbidity and functional impairment in a clinically referred sample of adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci 257:371–377

    Article  PubMed  Google Scholar 

  90. Sonuga-Barke EJ, Brookes KJ, Buitelaar J et al (2008) Intelligence in DSM-IV combined type attentiondeficit/hyperactivity disorder is not predicted by either dopamine receptor/transporter genes or other previously identified risk alleles for attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147:316–319

    PubMed  Google Scholar 

  91. Sonuga-Barke EJ, Sergeant JA, Nigg J et al (2008) Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child Adolesc Psychiatr Clin N Am 17:367–384

    Article  PubMed  Google Scholar 

  92. Swanson J, Oosterlaan J, Murias M et al (2000) Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proc Natl Acad Sci USA 97:4754–4759

    Article  PubMed  CAS  Google Scholar 

  93. Szatmari P, Maziade M, Zwaigenbaum L et al (2007) Informative phenotypes for genetic studies of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 144:581–588

    Google Scholar 

  94. Taerk E, Grizenko N, Ben Amor L et al (2004) Catechol-O-Methyltransferase (COMT) Val108/158Met polymorphism does not modulate executive function in children with ADHD. BMC Med Genet 5:30

    Article  PubMed  Google Scholar 

  95. Waldman ID, Gizer IR (2006) The genetics of attention deficit hyperactivity disorder. Clin Psychol Rev 26:396–432

    Article  PubMed  Google Scholar 

  96. Waldman ID, Nigg JT, Gizer IR et al (2006) The adrenergic receptor alpha-2A gene (ADRA2A) and neuropsychological executive functions as putative endophenotype for childhood ADHD. Cogn Affect Behav Neurosci 6:18–30

    Article  PubMed  Google Scholar 

  97. Waldman ID (2005) Statistical approaches to complex phenotypes: evaluating neuropsychological endophenotypes for attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1347–1356

    Article  PubMed  Google Scholar 

  98. Willcutt EG, Doyle AE, Nigg JT et al (2005) Validity of the executive function theory of attentiondeficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57:1336–1346

    Article  PubMed  Google Scholar 

  99. Willcutt EG, Pennington BF (2000) Comorbidity of reading disability and attention-deficit/hyperactivity disorder: differences by gender and subtype. J Learn Disabil 33:179–191

    Article  PubMed  CAS  Google Scholar 

  100. Wohl M, Boni C, Asch M et al (2008) Lack of association of the dopamine transporter gene in a French ADHD sample. Am J Med Genet B Neuropsychiatr Genet 147:1509–1510

    Google Scholar 

  101. Zabetian CP, Anderson GM, Buxbaum SG et al (2001) A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet 68:515–522

    Article  PubMed  CAS  Google Scholar 

  102. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Joober.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kebir, O., Joober, R. Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: a review of genetic association studies. Eur Arch Psychiatry Clin Neurosci 261, 583–594 (2011). https://doi.org/10.1007/s00406-011-0207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-011-0207-5

Keywords

Navigation