Skip to main content
Log in

Pediatric low-grade gliomas can be molecularly stratified for risk

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Pediatric low-grade gliomas (PLGGs) consist of a number of entities with overlapping histological features. PLGGs have much better prognosis than the adult counterparts, but a significant proportion of PLGGs suffers from tumor progression and recurrence. It has been shown that pediatric and adult low-grade gliomas are molecularly distinct. Yet the clinical significance of some of newer biomarkers discovered by genomic studies has not been fully investigated. In this study, we evaluated in a large cohort of 289 PLGGs a list of biomarkers and examined their clinical relevance. TERT promoter (TERTp), H3F3A and BRAF V600E mutations were detected by direct sequencing. ATRX nuclear loss was examined by immunohistochemistry. CDKN2A deletion, KIAA1549-BRAF fusion, and MYB amplification were determined by fluorescence in situ hybridization (FISH). TERTp, H3F3A, and BRAF V600E mutations were identified in 2.5, 6.4, and 7.4% of PLGGs, respectively. ATRX loss was found in 4.9% of PLGGs. CDKN2A deletion, KIAA1549-BRAF fusion and MYB amplification were detected in 8.8, 32.0 and 10.6% of PLGGs, respectively. Survival analysis revealed that TERTp mutation, H3F3A mutation, and ATRX loss were significantly associated with poor PFS (p < 0.0001, p < 0.0001, and p = 0.0002) and OS (p < 0.0001, p < 0.0001, and p < 0.0001). BRAF V600E was associated with shorter PFS (p = 0.011) and OS (p = 0.032) in a subset of PLGGs. KIAA1549-BRAF fusion was a good prognostic marker for longer PFS (p = 0.0017) and OS (p = 0.0029). MYB amplification was also a favorable marker for a longer PFS (p = 0.040). Importantly, we showed that these molecular biomarkers can be used to stratify PLGGs into low- (KIAA1549-BRAF fusion or MYB amplification), intermediate-I (BRAF V600E and/or CDKN2A deletion), intermediate-II (no biomarker), and high-risk (TERTp or H3F3A mutation or ATRX loss) groups with distinct PFS (p < 0.0001) and OS (p < 0.0001). This scheme should aid in clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aibaidula A, Chan AK-Y, Shi Z, Li Y, Zhang R, Yang R et al (2017) Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol 19:1327–1337

    Article  PubMed  Google Scholar 

  2. Ater JL, Zhou T, Holmes E, Mazewski CM, Booth TN, Freyer DR et al (2012) Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol 30(21):2641–2647

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ et al (2014) Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the surveillance epidemiology and end results (SEER) database. Pediatr Blood Cancer 61(7):1173–1179

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48(3):273–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67(9):878–887

    Article  PubMed  CAS  Google Scholar 

  6. Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N et al (2010) A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13):3368–3377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, Kocak M et al (2007) Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol 25(6):682–689

    Article  PubMed  CAS  Google Scholar 

  8. Castel D, Philippe C, Calmon R, Dret LL, Truffaux N, Boddaert N et al (2015) Histone H3F3A and HIST1H3B K27 M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130(6):815–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cruz GR, Dias Oliveira I, Moraes L, Del Giudice Paniago M, de Seixas Alves MT, Capellano AM et al (2014) Analysis of KIAA1549–BRAF fusion gene expression and IDH1/IDH2 mutations in low grade pediatric astrocytomas. J Neurooncol 117(2):235–242

    Article  PubMed  CAS  Google Scholar 

  10. Dahiya S, Haydon DH, Alvarado D, Gurnett CA, Gutmann DH, Leonard JR (2013) BRAFV600E mutation is a negative prognosticator in pediatric ganglioglioma. Acta Neuropathol 125(6):901–910

    Article  PubMed  CAS  Google Scholar 

  11. Diaz AK, Baker SJ (2014) The genetic signatures of pediatric high-grade glioma: no longer a one-act play. Semin Radiat Oncol 24(4):240–247

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dimitriadis E, Alexiou GA, Tsotsou P, Simeonidi E, Stefanaki K, Patereli A et al (2013) BRAF alterations in pediatric low grade gliomas and mixed neuronal–glial tumors. J Neurooncol 113(3):353–358

    Article  PubMed  CAS  Google Scholar 

  13. Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12(7):621–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Eisenhardt AE, Olbrich H, Roring M, Janzarik W, Anh TN, Cin H et al (2011) Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma. Int J Cancer 129(9):2297–2303

    Article  PubMed  CAS  Google Scholar 

  15. Gessi M, Moneim YA, Hammes J, Waha A, Pietsch T (2014) FGFR1 N546 K mutation in a case of papillary glioneuronal tumor (PGNT). Acta Neuropathol 127(6):935–936

    Article  PubMed  Google Scholar 

  16. Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M et al (2011) BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17(14):4790–4798

    Article  PubMed  CAS  Google Scholar 

  17. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333(6041):425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Horbinski C (2013) To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72(1):2–7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF (2010) Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119(5):641–649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14(6):777–789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Johnson A, Severson E, Gay L, Vergilio JA, Elvin J, Suh J et al (2017) Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 22(12):1478–1490

    Article  PubMed  CAS  Google Scholar 

  22. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8):927–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jones DT, Mulholland SA, Pearson DM, Malley DS, Openshaw SW, Lambert SR et al (2011) Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol 121(6):753–761

    Article  PubMed  Google Scholar 

  25. Jones DT, Witt O, Pfister SM (2018) BRAF V600E status alone is not sufficient as a prognostic biomarker in pediatric low-grade glioma. J Clin Oncol 36(1):96

    Article  PubMed  Google Scholar 

  26. Kilday JP, Katharina U, Bouffet B (2014) Targeted therapy in pediatric low-grade glioma. Curr Neurol Neurosci Rep 14(4):441

    Article  PubMed  CAS  Google Scholar 

  27. Koelsche C, Sahm F, Capper D, Reuss D, Sturm D, Jones DT et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126(6):907–915

    Article  PubMed  CAS  Google Scholar 

  28. Lassaletta A, Zapotocky M, Bouffet E, Hawkins C, Tabori U (2016) An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update. Childs Nerv Syst 32(10):1789–1797

    Article  PubMed  Google Scholar 

  29. Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R et al (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35(25):2934–2941

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li YX, Shi Z, Aibaidula A, Chen H, Tang Q, Li KK et al (2016) Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic. Oncotarget 7(40):64615–64630

    PubMed  PubMed Central  Google Scholar 

  31. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  32. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1000 pediatric high-grade and diffuse intrinsic Pontine Glioma. Cancer Cell 32(4):520–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33(9):1015–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62

    Article  PubMed  PubMed Central  Google Scholar 

  35. Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M et al (2017) Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol 19(6):750–761

    PubMed  Google Scholar 

  36. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG et al (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29(30):3999–4006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118(5):1739–1749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD et al (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131(6):833–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Raabe E, Kieran MW, Cohen KJ (2013) New strategies in pediatric gliomas: molecular advances in pediatric low-grade gliomas as a model. Clin Cancer Res 19(17):4553–4558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ramkissoon LA, Horowitz PM, Craiga JM, Ramkissoon SH, Rich BE, Schumacher SE et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci USA 110(20):8188–8193

    Article  PubMed  Google Scholar 

  42. Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B et al (2011) PI3 K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121(3):407–420

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez FJ, Lim KS, Bowers D, Eberhart CG (2013) Pathological and molecular advances in pediatric low-grade astrocytoma. Annu Rev Pathol 8:361–379

    Article  PubMed  CAS  Google Scholar 

  44. Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378(2):F115–F177

    PubMed  CAS  Google Scholar 

  45. Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, Siddaway R et al (2016) Targeted detection of genetic alterations reveal the prognostic impact of H3K27 M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun 4(1):93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ryall S, Tabori U, Hawkins C (2017) A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment. Brain Tumor Pathol 34(2):56–61

    Article  Google Scholar 

  47. Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley MY, Yu M et al (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70(2):512–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C et al (2011) Analysis of BRAF V600E mutation in 1320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405

    Article  PubMed  CAS  Google Scholar 

  49. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231

    Article  PubMed  CAS  Google Scholar 

  50. Sievert AJ, Fisher MJ (2009) Pediatric low-grade gliomas. J Child Neurol 24(11):1397–1408

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC et al (2009) Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 19(3):449–458

    Article  PubMed  CAS  Google Scholar 

  52. Smith JS, Perry A, Borell TJ, Lee HK, O’fallon J, Hosek SM et al (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18(3):636–656

    Article  PubMed  CAS  Google Scholar 

  53. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ et al (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26(5):569–580

    Article  PubMed  CAS  Google Scholar 

  54. Sturm D, Pfister SM, Jones DTW (2017) Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol 35(21):2370–2377

    Article  PubMed  Google Scholar 

  55. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DTW, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    Article  PubMed  CAS  Google Scholar 

  56. Takami H, Yoshida A, Fukushima S, Arita H, Matsushita Y, Nakamura T et al (2015) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol 25(3):256–265

    Article  PubMed  CAS  Google Scholar 

  57. Tanboon J, Williams EA, Louis DN (2016) The diagnostic use of immunohistochemical surrogates for signature molecular genetic alterations in gliomas. J Neuropathol Exp Neurol 75(1):4–18

    Article  PubMed  CAS  Google Scholar 

  58. Tatevossian RG, Tang B, Dalton J, Forshew T, Lawson AR, Ma J et al (2010) MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol 120(6):731–743

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wiestler B, Capper D, Holland-Letz T, Korshunov A, von Deimling A, Pfister SM et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451

    Article  PubMed  CAS  Google Scholar 

  60. Wisoff JH, Sanford RA, Heier LA, Sposto R, Burger PC, Yates AJ et al (2011) Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children’s Oncology Group. Neurosurgery 68(6):1548–1554 (discussion 1554–1545)

    Article  PubMed  Google Scholar 

  61. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Health and Medical Research Fund, Hong Kong (reference number 02133146); S. K. Yee Medical Foundation, Hong Kong (reference number 2151229); Children Cancer Foundation, Hong Kong; Shenzhen Science Technology and Innovation Commission (reference number JCYJ20170307165432612); and, Shanghai Municipal Commission of Health and Family Planning, China (reference number 201540145). We are grateful to Dr. Cynthia Hawkins, SickKids, Toronto, Canada, for allowing us to make use her NanoString panel.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kay Ka-Wai Li or Ho-Keung Ng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R.R., Aibaidula, A., Wang, Ww. et al. Pediatric low-grade gliomas can be molecularly stratified for risk. Acta Neuropathol 136, 641–655 (2018). https://doi.org/10.1007/s00401-018-1874-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1874-3

Keywords

Navigation