Skip to main content

Advertisement

Log in

ALS and FTD: an epigenetic perspective

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two fatal neurodegenerative diseases seen in comorbidity in up to 50 % of cases. Despite tremendous efforts over the last two decades, no biomarkers or effective therapeutics have been identified to prevent, decelerate, or stop neuronal death in patients. While the identification of multiple mutations in more than two dozen genes elucidated the involvement of several mechanisms in the pathogenesis of both diseases, identifying the hexanucleotide repeat expansion in C9orf72, the most common genetic abnormality in ALS and FTD, opened the door to the discovery of several novel pathogenic biological routes, including chromatin remodeling and transcriptome alteration. Epigenetic processes regulate DNA replication and repair, RNA transcription, and chromatin conformation, which in turn further dictate transcriptional regulation and protein translation. Transcriptional and post-transcriptional epigenetic regulation is mediated by enzymes and chromatin-modifying complexes that control DNA methylation, histone modifications, and RNA editing. While the alteration of DNA methylation and histone modification has recently been reported in ALS and FTD, the assessment of epigenetic involvement in both diseases is still at an early stage, and the involvement of multiple epigenetic players still needs to be evaluated. As the epigenome serves as a way to alter genetic information not only during aging, but also following environmental signals, epigenetic mechanisms might play a central role in initiating ALS and FTD, especially for sporadic cases. Here, we provide a review of what is currently known about altered epigenetic processes in both ALS and FTD and discuss potential therapeutic strategies targeting epigenetic mechanisms. As approximately 85 % of ALS and FTD cases are still genetically unexplained, epigenetic therapeutics explored for other diseases might represent a profitable direction for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abel EL (2007) Football increases the risk for Lou Gehrig’s disease, amyotrophic lateral sclerosis. Percept Mot Skills 104(3 Pt 2):1251–1254

    PubMed  Google Scholar 

  2. Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124(3):339–352

    Article  CAS  PubMed  Google Scholar 

  3. Al-Mahdawi S, Virmouni SA, Pook MA (2014) The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases. Front Neurosci 8:397

    Article  PubMed  PubMed Central  Google Scholar 

  4. Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S et al (2013) Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol 126(3):385–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319(5871):1787–1789

    Article  CAS  PubMed  Google Scholar 

  6. Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19(7–8):454–492

    Article  CAS  PubMed  Google Scholar 

  7. Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70(18):7027–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baizabal-Carvallo JF, Jankovic J (2016) Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat Rev Neurol. 12(3):175–185

    Article  CAS  PubMed  Google Scholar 

  9. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY et al (1973) Methylmercury poisoning in Iraq. Science 181(4096):230–241

    Article  CAS  PubMed  Google Scholar 

  10. Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology 61(3):387–389

    Article  CAS  PubMed  Google Scholar 

  11. Banzhaf-Strathmann J, Claus R, Mucke O, Rentzsch K, van der Zee J, Engelborghs S et al (2013) Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun 1:16

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bauer PO (2016) Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci Lett 612:204–209

    Article  CAS  PubMed  Google Scholar 

  13. Behm M, Ohman M (2016) RNA editing: a contributor to neuronal dynamics in the mammalian brain. Trends Genet 32(3):165–175

    Article  CAS  PubMed  Google Scholar 

  14. Belzil VV, Bauer PO, Gendron TF, Murray ME, Dickson D, Petrucelli L (2014) Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res 1584:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK et al (2013) Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 126(6):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belzil VV, Gendron TF, Petrucelli L (2013) RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 56C:406–419

    Article  CAS  Google Scholar 

  17. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655

    Article  CAS  PubMed  Google Scholar 

  19. Bonasio R, Shiekhattar R (2014) Regulation of transcription by long noncoding RNAs. Annu Rev Genet 48:433–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradley WG (2000) Neurology in clinical practice, 3rd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  21. Bradley WG, Mash DC (2009) Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 10(Suppl 2):7–20

    Article  CAS  PubMed  Google Scholar 

  22. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165(3891):349–357

    Article  CAS  PubMed  Google Scholar 

  23. Burrell JR, Kiernan MC, Vucic S, Hodges JR (2011) Motor neuron dysfunction in frontotemporal dementia. Brain 134(Pt 9):2582–2594

    Article  PubMed  Google Scholar 

  24. Byrne S, Heverin M, Elamin M, Bede P, Lynch C, Kenna K et al (2013) Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: a population-based case-control cohort study of familial and sporadic amyotrophic lateral sclerosis. Ann Neurol 74(5):699–708

    Article  PubMed  Google Scholar 

  25. Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K et al (2011) Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 82(6):623–627

    Article  PubMed  Google Scholar 

  26. Callahan KP, Butler JS (2008) Lifting the veil on the transcriptome. Genome Biol 9(4):218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Caller TA, Doolin JW, Haney JF, Murby AJ, West KG, Farrar HE et al (2009) A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms. Amyotroph Lateral Scler 10(Suppl 2):101–108

    Article  CAS  PubMed  Google Scholar 

  28. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563

    Article  CAS  PubMed  Google Scholar 

  29. Charcot JM, Joffroy A (1869) Deux cas d’atrophie musculaire progressive avec lésions de la substance grise et des faisceaux antéraux de la moelle épinière. Arch Physiol Neurol Pathol 2:744–754

    Google Scholar 

  30. Chen H, Dzitoyeva S, Manev H (2012) Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restor Neurol Neurosci 30(3):237–245

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen T (2011) Mechanistic and functional links between histone methylation and DNA methylation. Prog Mol Biol Transl Sci 101:335–348

    Article  CAS  PubMed  Google Scholar 

  32. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31(46):16619–16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chio A, Benzi G, Dossena M, Mutani R, Mora G (2005) Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain 128(Pt 3):472–476

    Article  PubMed  Google Scholar 

  34. Chio A, Schymick JC, Restagno G, Scholz SW, Lombardo F, Lai SL et al (2009) A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 18(8):1524–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiu AS, Gehringer MM, Welch JH, Neilan BA (2011) Does alpha-amino-beta-methylaminopropionic acid (BMAA) play a role in neurodegeneration? Int J Environ Res Public Health 8(9):3728–3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A et al (2013) Loss of function of C9orf72 causes motor deficits in a zebrafish model of Amyotrophic Lateral Sclerosis. Ann Neurol 74(2):180–187

    CAS  PubMed  Google Scholar 

  37. Cloutier F, Marrero A, O’Connell C, Morin P Jr (2015) MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J Mol Neurosci 56(1):102–112

    Article  CAS  PubMed  Google Scholar 

  38. Combs GF Jr (2001) Selenium in global food systems. The British journal of nutrition 85(5):517–547

    Article  CAS  PubMed  Google Scholar 

  39. Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    CAS  PubMed  Google Scholar 

  40. Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG et al (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17(5):768–774

    Article  CAS  PubMed  Google Scholar 

  41. Cronin S, Greenway MJ, Prehn JH, Hardiman O (2007) Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 78(9):984–986

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown RH Jr et al (2009) Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler 10(2):99–106

    Article  CAS  PubMed  Google Scholar 

  43. Dastur DK (1964) Cycad toxicity in monkeys: clinical, pathological, and biochemical aspects. Fed Proc 23:1368–1369

    CAS  PubMed  Google Scholar 

  44. Day JJ, Kennedy AJ, Sweatt JD (2015) DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu Rev Pharmacol Toxicol 55:591–611

    Article  CAS  PubMed  Google Scholar 

  45. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R et al (2016) RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351(6270):282–285

    Article  CAS  PubMed  Google Scholar 

  47. Diekstra FP, Beleza-Meireles A, Leigh NP, Shaw CE, Al-Chalabi A (2009) Interaction between PON1 and population density in amyotrophic lateral sclerosis. NeuroReport 20(2):186–190

    Article  CAS  PubMed  Google Scholar 

  48. Dinger ME, Mercer TR, Mattick JS (2008) RNAs as extracellular signaling molecules. J Mol Endocrinol 40(4):151–159

    Article  CAS  PubMed  Google Scholar 

  49. Dobrowolny G, Bernardini C, Martini M, Baranzini M, Barba M, Musaro A (2015) Muscle expression of SOD1(G93A) modulates microRNA and mRNA transcription pattern associated with the myelination process in the spinal cord of transgenic mice. Front Cell Neurosci 9:463

    Article  PubMed  PubMed Central  Google Scholar 

  50. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80(2):415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Erwin JA, Marchetto MC, Gage FH (2014) Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15(8):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Esanov R, Belle KC, van Blitterswijk M, Belzil VV, Rademakers R, Dickson DW et al (2015) C9orf72 promoter hypermethylation is reduced while hydroxymethylation is acquired during reprogramming of ALS patient cells. Exp Neurol 277:171–177

    Article  PubMed  CAS  Google Scholar 

  53. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691

    Article  CAS  PubMed  Google Scholar 

  54. Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL et al (2012) Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS ONE 7(12):e52672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Figueroa-Romero C, Hur J, Lunn JS, Paez-Colasante X, Bender DE, Yung R et al (2016) Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms. Mol Cell Neurosci 71:34–45

    Article  CAS  PubMed  Google Scholar 

  56. Finch N, Baker M, Crook R, Swanson K, Kuntz K, Surtees R et al (2009) Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132(Pt 3):583–591

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fratta P, Poulter M, Lashley T, Rohrer JD, Polke JM, Beck J et al (2013) Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol 126(3):401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S et al (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 136(33):11582–11585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Galimberti D, D’Addario C, Dell’osso B, Fenoglio C, Marcone A, Cerami C et al (2013) Progranulin gene (GRN) promoter methylation is increased in patients with sporadic frontotemporal lobar degeneration. Neurol Sci 34(6):899–903

    Article  PubMed  Google Scholar 

  60. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J et al (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gascon E, Gao FB (2012) Cause or Effect: misregulation of microRNA Pathways in Neurodegeneration. Front Neurosci 6:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden JM, Seeley WW et al (2014) Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 20(12):1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gibson SB, Figueroa KP, Bromberg MB, Pulst SM, Cannon-Albright L (2014) Familial clustering of ALS in a population-based resource. Neurology 82(1):17–22

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65

    Article  CAS  PubMed  Google Scholar 

  65. Giordana MT, Ferrero P, Grifoni S, Pellerino A, Naldi A, Montuschi A (2011) Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci 32(1):9–16

    Article  PubMed  Google Scholar 

  66. Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 5(12):e15367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gordon PH, Delgadillo D, Piquard A, Bruneteau G, Pradat PF, Salachas F et al (2011) The range and clinical impact of cognitive impairment in French patients with ALS: a cross-sectional study of neuropsychological test performance. Amyotroph Lateral Scler 12(5):372–378

    Article  PubMed  Google Scholar 

  68. Graff-Radford NR, Woodruff BK (2007) Frontotemporal dementia. Semin Neurol 27(1):48–57

    Article  PubMed  Google Scholar 

  69. Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 19(5):6891–6910

    Article  PubMed  CAS  Google Scholar 

  70. Griffiths BB, Hunter RG (2014) Neuroepigenetics of stress. Neuroscience 275:420–435

    Article  CAS  PubMed  Google Scholar 

  71. Guerreiro R, Bras J, Hardy J (2015) SnapShot: genetics of ALS and FTD. Cell 160(4):798 (e791)

    Article  CAS  PubMed  Google Scholar 

  72. Hakansson N, Gustavsson P, Johansen C, Floderus B (2003) Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology 14(4):420–426 (discussion 427–428)

    PubMed  Google Scholar 

  73. Harrison IF, Dexter DT (2013) Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson’s disease? Pharmacol Ther 140(1):34–52

    Article  CAS  PubMed  Google Scholar 

  74. Hasler J, Samuelsson T, Strub K (2007) Useful ‘junk’: Alu RNAs in the human transcriptome. Cell Mol Life Sci 64(14):1793–1800

    Article  CAS  PubMed  Google Scholar 

  75. Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22(17):4523–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ho AS, Turcan S, Chan TA (2013) Epigenetic therapy: use of agents targeting deacetylation and methylation in cancer management. Onco Targets Ther 6:223–232

    PubMed  PubMed Central  Google Scholar 

  77. Hodges J (2012) Familial frontotemporal dementia and amyotrophic lateral sclerosis associated with the C9ORF72 hexanucleotide repeat. Brain 135(Pt 3):652–655

    Article  PubMed  Google Scholar 

  78. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16(2):71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holtcamp W (2012) The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? Environ Health Perspect 120(3):A110–116

    Article  PubMed  PubMed Central  Google Scholar 

  80. Horner RD, Grambow SC, Coffman CJ, Lindquist JH, Oddone EZ, Allen KD et al (2008) Amyotrophic lateral sclerosis among 1991 Gulf War veterans: evidence for a time-limited outbreak. Neuroepidemiology 31(1):28–32

    Article  PubMed  Google Scholar 

  81. Huang Y, Rao A (2014) Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet 30(10):464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hunter RG, Gagnidze K, McEwen BS, Pfaff DW (2015) Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc Natl Acad Sci USA 112(22):6828–6833

    Article  CAS  PubMed  Google Scholar 

  83. Hunter RG, McEwen BS (2013) Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics 5(2):177–194

    Article  CAS  PubMed  Google Scholar 

  84. Hunter RG, McEwen BS, Pfaff DW (2013) Environmental stress and transposon transcription in the mammalian brain. Mob Genet Elements 3(2):e24555

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060

    Article  CAS  PubMed  Google Scholar 

  86. Jeschke J, Collignon E, Fuks F (2016) Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr Opin Genet Dev 36:16–26

    Article  CAS  PubMed  Google Scholar 

  87. Jiao J, Herl LD, Farese RV, Gao FB (2010) MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE 5(5):e10551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30(5):761–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Johnson R, Guigo R (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20(7):959–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S et al (2005) Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 15(7):987–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Karlsson O, Roman E, Berg AL, Brittebo EB (2011) Early hippocampal cell death, and late learning and memory deficits in rats exposed to the environmental toxin BMAA (beta-N-methylamino-l-alanine) during the neonatal period. Behav Brain Res 219(2):310–320

    Article  CAS  PubMed  Google Scholar 

  92. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106(28):11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim EZ, Wespiser AR, Caffrey DR (2016) The domain structure and distribution of Alu elements in long noncoding RNAs and mRNAs. RNA 22(2):254–264

    Article  PubMed  Google Scholar 

  94. Klug M, Heinz S, Gebhard C, Schwarzfischer L, Krause SW, Andreesen R et al (2010) Active DNA demethylation in human postmitotic cells correlates with activating histone modifications, but not transcription levels. Genome Biol 11(6):R63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koppers M, Blokhuis AM, Westeneng HJ, Terpstra ML, Zundel CA, Vieira de Sa R et al (2015) C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 78:426–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J et al (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22(20):4127–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Myllykangas L et al (2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 9(10):978–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC (2014) Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther 10(3):469–478

    CAS  PubMed  Google Scholar 

  101. Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Leung AK, Sharp PA (2007) microRNAs: a safeguard against turmoil? Cell 130(4):581–585

    Article  CAS  PubMed  Google Scholar 

  103. Li Y, Chen JA, Sears RL, Gao F, Klein ED, Karydas A et al (2014) An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet 10(3):e1004211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Liu EY, Russ J, Wu K, Neal D, Suh E, McNally AG et al (2014) C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128(4):525–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lo R, Weksberg R (2014) Biological and biochemical modulation of DNA methylation. Epigenomics 6(6):593–602

    Article  CAS  PubMed  Google Scholar 

  106. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59(7):1077–1079

    Article  PubMed  Google Scholar 

  107. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marcuzzo S, Bonanno S, Kapetis D, Barzago C, Cavalcante P, D’Alessandro S et al (2015) Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Mol Brain 8:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29(4):499–509

    Article  CAS  PubMed  Google Scholar 

  110. Matin MA, Hussain K (1985) Striatal neurochemical changes and motor dysfunction in mipafox-treated animals. Methods Find Exp Clin Pharmacol 7(2):79–81

    CAS  PubMed  Google Scholar 

  111. Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2(11):986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210(Pt 9):1526–1547

    Article  PubMed  Google Scholar 

  113. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF (2009) RNA regulation of epigenetic processes. Bioessays 31(1):51–59

    CAS  PubMed  Google Scholar 

  114. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22(1):5–7

    Article  CAS  PubMed  Google Scholar 

  115. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN et al (2015) Mechanisms of stress in the brain. Nat Neurosci 18(10):1353–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McMillan CT, Russ J, Wood EM, Irwin DJ, Grossman M, McCluskey L et al (2015) C9orf72 promoter hypermethylation is neuroprotective: neuroimaging and neuropathologic evidence. Neurology 84(16):1622–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Meaney MJ, Szyf M (2005) Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci 7(2):103–123

    PubMed  PubMed Central  Google Scholar 

  118. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459

    Article  CAS  PubMed  Google Scholar 

  119. Meltz Steinberg K, Nicholas TJ, Koboldt DC, Yu B, Mardis E, Pamphlett R (2015) Whole genome analyses reveal no pathogenetic single nucleotide or structural differences between monozygotic twins discordant for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 16(5–6):385–392

    Article  PubMed  CAS  Google Scholar 

  120. Mercy L, Hodges JR, Dawson K, Barker RA, Brayne C (2008) Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology 71(19):1496–1499

    Article  CAS  PubMed  Google Scholar 

  121. Migliore L, Coppede F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 674(1–2):73–84

    Article  CAS  PubMed  Google Scholar 

  122. Miranda ML, Alicia Overstreet Galeano M, Tassone E, Allen KD, Horner RD (2008) Spatial analysis of the etiology of amyotrophic lateral sclerosis among 1991 Gulf War veterans. Neurotoxicology 29(6):964–970

    Article  PubMed  Google Scholar 

  123. Morahan JM, Yu B, Trent RJ, Pamphlett R (2007) A gene-environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis. Neurotoxicology 28(3):532–540

    Article  CAS  PubMed  Google Scholar 

  124. Morahan JM, Yu B, Trent RJ, Pamphlett R (2009) A genome-wide analysis of brain DNA methylation identifies new candidate genes for sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10(5–6):418–429

    Article  CAS  PubMed  Google Scholar 

  125. Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S et al (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288(10):7105–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339(6125):1335–1338

    Article  CAS  PubMed  Google Scholar 

  127. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Musaro A (2013) Understanding ALS: new therapeutic approaches. FEBS J 280(17):4315–4322

    Article  CAS  PubMed  Google Scholar 

  129. Navaratnam N, Sarwar R (2006) An overview of cytidine deaminases. Int J Hematol 83(3):195–200

    Article  CAS  PubMed  Google Scholar 

  130. Nolan K, Mitchem MR, Jimenez-Mateos EM, Henshall DC, Concannon CG, Prehn JH (2014) Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci 53(2):231–241

    Article  CAS  PubMed  Google Scholar 

  131. Oates N, Pamphlett R (2007) An epigenetic analysis of SOD1 and VEGF in ALS. Amyotroph Lateral Scler 8(2):83–86

    Article  CAS  PubMed  Google Scholar 

  132. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL (2015) Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 11(5):266–279

    Article  CAS  PubMed  Google Scholar 

  134. Penn NW, Suwalski R, O’Riley C, Bojanowski K, Yura R (1972) The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J 126(4):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM (2013) Delivering the promise of miRNA cancer therapeutics. Drug Discov Today 18(5–6):282–289

    Article  CAS  PubMed  Google Scholar 

  136. Perry DC, Miller BL (2013) Frontotemporal dementia. Semin Neurol 33(4):336–341

    Article  PubMed  Google Scholar 

  137. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12

    Article  CAS  PubMed  Google Scholar 

  138. Pogue AI, Jones BM, Bhattacharjee S, Percy ME, Zhao Y, Lukiw WJ (2012) Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer. Int J Mol Sci 13(8):9615–9626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Polsky FI, Nunn PB, Bell EA (1972) Distribution and toxicity of alpha-amino-beta-methylaminopropionic acid. Fed Proc 31(5):1473–1475

    CAS  PubMed  Google Scholar 

  140. Polymenidou M, Lagier-Tourenne C, Hutt KR, Bennett CF, Cleveland DW, Yeo GW (2012) Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res 1462:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Privat E, Sowers LC (1996) Photochemical deamination and demethylation of 5-methylcytosine. Chem Res Toxicol 9(4):745–750

    Article  CAS  PubMed  Google Scholar 

  142. Prudencio M, Belzil VV, Batra R, Ross CA, Gendron TF, Pregent LJ et al (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18(8):1175–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Purdie EL, Samsudin S, Eddy FB, Codd GA (2009) Effects of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine on the early-life stage development of zebrafish (Danio rerio). Aquat Toxicol 95(4):279–284

    Article  CAS  PubMed  Google Scholar 

  144. Raaphorst J, de Visser M, Linssen WH, de Haan RJ, Schmand B (2010) The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotroph Lateral Scler 11(1–2):27–37

    Article  PubMed  Google Scholar 

  145. Rademakers R, van Blitterswijk M (2013) Motor neuron disease in 2012: novel causal genes and disease modifiers. Nat Rev Neurol 9(2):63–64

    Article  CAS  PubMed  Google Scholar 

  146. Rechavi O, Houri-Ze’evi L, Anava S, Goh WS, Kerk SY, Hannon GJ et al (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158(2):277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33(45):17577–17586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Remely M, Stefanska B, Lovrecic L, Magnet U, Haslberger AG (2015) Nutriepigenomics: the role of nutrition in epigenetic control of human diseases. Curr Opin Clin Nutr Metab Care 18(4):328–333

    Article  CAS  PubMed  Google Scholar 

  149. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  150. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Reul JM (2014) Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways. Front Psychiatry 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  152. Reul JM, Chandramohan Y (2007) Epigenetic mechanisms in stress-related memory formation. Psychoneuroendocrinology 32(Suppl 1):S21–25

    Article  CAS  PubMed  Google Scholar 

  153. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65(4):586–590

    Article  CAS  PubMed  Google Scholar 

  154. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  155. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839 12:1362–1372

    Article  CAS  Google Scholar 

  156. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Russ J, Liu EY, Wu K, Neal D, Suh E, Irwin DJ et al (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129(1):39–52

    Article  CAS  PubMed  Google Scholar 

  158. Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH et al (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93(5):1087–1098

    Article  CAS  PubMed  Google Scholar 

  159. Saeed M, Siddique N, Hung WY, Usacheva E, Liu E, Sufit RL et al (2006) Paraoxonase cluster polymorphisms are associated with sporadic ALS. Neurology 67(5):771–776

    Article  CAS  PubMed  Google Scholar 

  160. Sanchez-Elsner T, Gou D, Kremmer E, Sauer F (2006) Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311(5764):1118–1123

    Article  CAS  PubMed  Google Scholar 

  161. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR et al (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15(8):842–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 368(1609):20110330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Seltman RE, Matthews BR (2012) Frontotemporal lobar degeneration: epidemiology, pathology, diagnosis and management. CNS Drugs 26(10):841–870

    Article  CAS  PubMed  Google Scholar 

  164. Sherwani SI, Khan HA (2015) Role of 5-hydroxymethylcytosine in neurodegeneration. Gene 570(1):17–24

    Article  CAS  PubMed  Google Scholar 

  165. Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258

    Article  CAS  PubMed  Google Scholar 

  166. Sun W, Zang L, Shu Q, Li X (2014) From development to diseases: the role of 5hmC in brain. Genomics 104(5):347–351

    Article  CAS  PubMed  Google Scholar 

  167. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476

    Article  CAS  PubMed  Google Scholar 

  168. Suzuki N, Maroof AM, Merkle FT, Koszka K, Intoh A, Armstrong I et al (2013) The mouse C9ORF72 ortholog is enriched in neurons known to degenerate in ALS and FTD. Nat Neurosci 16(12):1725–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Szczygielski J, Mautes A, Steudel WI, Falkai P, Bayer TA, Wirths O (2005) Traumatic brain injury: cause or risk of Alzheimer’s disease? A review of experimental studies. J Neural Transm 112(11):1547–1564

    Article  CAS  PubMed  Google Scholar 

  170. Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14(12):1607–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Therrien M, Rouleau GA, Dion PA, Parker JA (2013) Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS ONE 8(12):e83450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Toivonen JM, Manzano R, Olivan S, Zaragoza P, Garcia-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS ONE 9(2):e89065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Tremolizzo L, Messina P, Conti E, Sala G, Cecchi M, Airoldi L et al (2014) Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph Lateral Scler Frontotemporal Degener 15(1–2):98–105

    Article  CAS  PubMed  Google Scholar 

  175. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    Article  CAS  PubMed  Google Scholar 

  176. Valdmanis PN, Kabashi E, Dyck A, Hince P, Lee J, Dion P et al (2008) Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden. Neurology 71(7):514–520

    Article  CAS  PubMed  Google Scholar 

  177. van Blitterswijk M, DeJesus-Hernandez M, Rademakers R (2012) How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol 25(6):689–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. van Blitterswijk M, Gendron TF, Baker MC, DeJesus-Hernandez M, Finch NA, Brown PH et al (2015) Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol 130(6):863–876

    Article  PubMed  CAS  Google Scholar 

  179. van Es MA, Van Vught PW, Blauw HM, Franke L, Saris CG, Andersen PM et al (2007) ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol 6(10):869–877

    Article  PubMed  CAS  Google Scholar 

  180. Varriale A (2014) DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. Int J Evol Biol 2014:475981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Varriale A, Bernardi G (2006) DNA methylation and body temperature in fishes. Gene 385:111–121

    Article  CAS  PubMed  Google Scholar 

  182. Varriale A, Bernardi G (2006) DNA methylation in reptiles. Gene 385:122–127

    Article  CAS  PubMed  Google Scholar 

  183. Vasanthakumar A, Godley LA (2015) 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet 208(5):167–177

    Article  CAS  PubMed  Google Scholar 

  184. Veerappan CS, Sleiman S, Coppola G (2013) Epigenetics of Alzheimer’s disease and frontotemporal dementia. Neurotherapeutics 10(4):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389(6651):553

    Article  CAS  PubMed  Google Scholar 

  186. Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76(3):567–576

    Article  CAS  PubMed  Google Scholar 

  187. Xi Z, Rainero I, Rubino E, Pinessi L, Bruni AC, Maletta RG et al (2014) Hypermethylation of the CpG-island near the C9orf72 G(4)C(2)-repeat expansion in FTLD patients. Hum Mol Genet 23(21):5630–5637

    Article  PubMed  Google Scholar 

  188. Xi Z, van Blitterswijk M, Zhang M, McGoldrick P, McLean JR, Yunusova Y et al (2015) Jump from pre-mutation to pathologic expansion in C9orf72. Am J Hum Genet 96(6):962–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Xi Z, Yunusova Y, van Blitterswijk M, Dib S, Ghani M, Moreno D et al (2014) Identical twins with the C9orf72 repeat expansion are discordant for ALS. Neurology 83(16):1476–1478

    Article  PubMed  PubMed Central  Google Scholar 

  190. Xi Z, Zhang M, Bruni AC, Maletta RG, Colao R, Fratta P et al (2015) The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 129(5):715–727

    Article  CAS  PubMed  Google Scholar 

  191. Xi Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C et al (2013) Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92(6):981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58(3):277–286

    PubMed  PubMed Central  Google Scholar 

  193. Zeier Z, Esanov R, Belle KC, Volmar CH, Johnstone AL, Halley P et al (2015) Bromodomain inhibitors regulate the C9ORF72 locus in ALS. Exp Neurol 271:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang Z, Almeida S, Lu Y, Nishimura AL, Peng L, Sun D et al (2013) Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS ONE 8(10):e76055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Petrucelli.

Additional information

V. V. Belzil and R. B. Katzman contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belzil, V.V., Katzman, R.B. & Petrucelli, L. ALS and FTD: an epigenetic perspective. Acta Neuropathol 132, 487–502 (2016). https://doi.org/10.1007/s00401-016-1587-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1587-4

Keywords

Navigation