Skip to main content

Advertisement

Log in

MicroRNAs as Potential Circulating Biomarkers for Amyotrophic Lateral Sclerosis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a condition primarily characterized by the selective loss of upper and lower motor neurons. Motor neuron loss gives rise to muscle tissue malfunctions, including weakness, spasticity, atrophy, and ultimately paralysis, with death typically due to respiratory failure within 2 to 5 years of symptoms’ onset. The mean delay in time from presentation to diagnosis remains at over 1 year. Biomarkers are urgently needed to facilitate ALS diagnosis and prognosis as well as to act as indicators of therapeutic response in clinical trials. MicroRNAs (miRNAs) are small molecules that can influence posttranscriptional gene expression of a variety of transcript targets. Interestingly, miRNAs can be released into the circulation by pathologically affected tissues. This review presents therapeutic and diagnostic challenges associated with ALS, highlights the potential role of miRNAs in ALS, and discusses the diagnostic potential of these molecules in identifying ALS-specific miRNAs or in distinguishing between the various genotypic and phenotypic forms of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124(3):339–352

    CAS  PubMed  Google Scholar 

  • Andersen PM, Abrahams S, Borasio GD, de Carvalho M, Chio A, Van Damme P, Hardiman O, Kollewe K, Morrison KE, Petri S, Pradat PF, Silani V, Tomik B, Wasner M, Weber M (2012) EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)—revised report of an EFNS task force. Eur J Neurol 19(3):360–375

    PubMed  Google Scholar 

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nat 455(7209):64–71

    CAS  Google Scholar 

  • Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurol 61(3):387–389

    CAS  Google Scholar 

  • Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barth SK, Kang HK, Bullman TA, Wallin MT (2009) Neurological mortality among U.S. veterans of the Persian Gulf War: 13-year follow-up. Am J Ind Med 52(9):663–670

    PubMed  Google Scholar 

  • Beard JD, Kamel F (2014) “Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology and survival.” Epidemiol Rev

  • Belsh JM, Schiffman PL (1996) The amyotrophic lateral sclerosis (ALS) patient perspective on misdiagnosis and its repercussions. J Neurol Sci 139(Suppl):110–116

    PubMed  Google Scholar 

  • Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/riluzole study group. N Engl J Med 330(9):585–591

    CAS  PubMed  Google Scholar 

  • Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville MJ, Percy ME (1994) Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol 53(3):221–230

    CAS  PubMed  Google Scholar 

  • Blasco H, Corcia P, Moreau C, Veau S, Fournier C, Vourc’h P, Emond P, Gordon P, Pradat PF, Praline J, Devos D, Nadal-Desbarats L, Andres CR (2010) “1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis.”. PLoS One 5(10):e13223

    PubMed Central  PubMed  Google Scholar 

  • Blokhuis AM, Groen EJ, Koppers M, van den Berg LH, Pasterkamp RJ (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125(6):777–794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bogaert E, d’Ydewalle C, Van Den Bosch L (2010) “Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target.”. CNS Neurol Disord Drug Targets 9(3):297–304

    CAS  PubMed  Google Scholar 

  • Bowerman M, Vincent T, Scamps F, Perrin FE, Camu W, Raoul C (2013) Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis. Front Cell Neurosci 7:214

    PubMed Central  PubMed  Google Scholar 

  • Bowser R, Turner MR, Shefner J (2011) Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations. Nat Rev Neurol 7(11):631–638

    CAS  PubMed  Google Scholar 

  • Bradley WG, Mash DC (2009) Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 10(Suppl 2):7–20

    CAS  PubMed  Google Scholar 

  • Bradley WG, Borenstein AR, Nelson LM, Codd GA, Rosen BH, Stommel EW, Cox PA (2013) Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative diseases? Amyotroph Lateral Scler Frontotemporal Degener 14(5–6):325–333

    CAS  PubMed  Google Scholar 

  • Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    CAS  PubMed  Google Scholar 

  • Bruneteau G, Simonet T, Bauche S, Mandjee N, Malfatti E, Girard E, Tanguy ML, Behin A, Khiami F, Sariali E, Hell-Remy C, Salachas F, Pradat PF, Fournier E, Lacomblez L, Koenig J, Romero NB, Fontaine B, Meininger V, Schaeffer L, Hantai D (2013) Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain 136(Pt 8):2359–2368

    PubMed  Google Scholar 

  • Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122(9):3063–3087

    PubMed Central  CAS  PubMed  Google Scholar 

  • Callaghan B, Feldman D, Gruis K, Feldman E (2011) The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener Dis 8(1–2):1–8

    CAS  PubMed  Google Scholar 

  • Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ (2013) Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 6:26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Camu W, Billiard M, Baldy-Moulinier M (1993) Fasting plasma and CSF amino acid levels in amyotrophic lateral sclerosis: a subtype analysis. Acta Neurol Scand 88(1):51–55

    CAS  PubMed  Google Scholar 

  • Cellura E, Spataro R, Taiello AC, La Bella V (2012) Factors affecting the diagnostic delay in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 114(6):550–554

    PubMed  Google Scholar 

  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    CAS  PubMed  Google Scholar 

  • Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1):27–41

    CAS  PubMed  Google Scholar 

  • Cohen TJ, Waddell DS, Barrientos T, Lu Z, Feng G, Cox GA, Bodine SC, Yao TP (2007) The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming. J Biol Chem 282(46):33752–33759

    CAS  PubMed  Google Scholar 

  • Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurol 58(6):956–959

    Google Scholar 

  • Cozzolino M, Carri MT (2012) Mitochondrial dysfunction in ALS. Prog Neurobiol 97(2):54–66

    CAS  PubMed  Google Scholar 

  • Davenport RJ, Swingler RJ, Chancellor AM, Warlow CP (1996) Avoiding false positive diagnoses of motor neuron disease: lessons from the scottish motor neuron disease register. J Neurol Neurosurg Psychiatr 60(2):147–151

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Felice B, Guida M, Guida M, Coppola C, De Mieri G, Cotrufo R (2012) A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508(1):35–40

    PubMed  Google Scholar 

  • De Felice B, Annunziata A, Fiorentino G, Borra M, Biffali E, Coppola C, Cotrufo R, Brettschneider J, Giordana ML, Dalmay T, Wheeler G, D’Alessandro R (2014) “miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients.”. Neurogenet 15(4):243–253

    Google Scholar 

  • Deapen DM, Henderson BE (1986) A case-control study of amyotrophic lateral sclerosis. Am J Epidemiol 123(5):790–799

    CAS  PubMed  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127(6):739–749

    CAS  PubMed  Google Scholar 

  • Fischer-Hayes LR, Brotherton T, Glass JD (2013) Axonal degeneration in the peripheral nervous system: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Neurol 246:6–13

    CAS  PubMed  Google Scholar 

  • Fiszman ML, Ricart KC, Latini A, Rodriguez G, Sica RE (2010) In vitro neurotoxic properties and excitatory aminoacids concentration in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Relationship with the degree of certainty of disease diagnoses. Acta Neurol Scand 121(2):120–126

    CAS  PubMed  Google Scholar 

  • Freischmidt A, Muller K, Ludolph AC, Weishaupt JH (2013) Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 1(1):42

    PubMed Central  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galimberti D, Villa C, Fenoglio C, Serpente M, Ghezzi L, Cioffi SM, Arighi A, Fumagalli G, Scarpini E (2014) “Circulating miRNAs as potential biomarkers in Alzheimer’s disease.”. J Alzheimers Dis 42(4):1261–1267

    CAS  PubMed  Google Scholar 

  • Gandhi R, Healy B, Gholipour T, Egorova S, Musallam A, Hussain MS, Nejad P, Patel B, Hei H, Khoury S, Quintana F, Kivisakk P, Chitnis T, Weiner HL (2013) Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 73(6):729–740

    CAS  PubMed  Google Scholar 

  • Gawel M, Zaiwalla Z, Rose FC (1983) Antecedent events in motor neuron disease. J Neurol Neurosurg Psychiatr 46(11):1041–1043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S, Engelborghs S, Sieben A, De Jonghe P, Vandenberghe R, Santens P, De Bleecker J, Maes G, Baumer V, Dillen L, Joris G, Cuijt I, Corsmit E, Elinck E, Van Dongen J, Vermeulen S, Van den Broeck M, Vaerenberg C, Mattheijssens M, Peeters K, Robberecht W, Cras P, Martin JJ, De Deyn PP, Cruts M, Van Broeckhoven C (2012) A C9orf72 promoter repeat expansion in a flanders-belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65

    CAS  PubMed  Google Scholar 

  • Goldstein LH, Abrahams S (2013) Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol 12(4):368–380

    PubMed  Google Scholar 

  • Gordon PH, Cheng B, Katz IB, Pinto M, Hays AP, Mitsumoto H, Rowland LP (2006) The natural history of primary lateral sclerosis. Neurol 66(5):647–653

    CAS  Google Scholar 

  • Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM, Baffa R (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25(5):387–392

    CAS  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nat 466(7308):835–840

    CAS  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Sci 264(5166):1772–1775

    CAS  Google Scholar 

  • Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hakansson N, Gustavsson P, Johansen C, Floderus B (2003) Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiol 14(4):420–426, discussion 427–428

    Google Scholar 

  • Haley RW (2003) Excess incidence of ALS in young gulf war veterans. Neurol 61(6):750–756

    Google Scholar 

  • Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661

    CAS  PubMed  Google Scholar 

  • Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E, Andreassen OA, Djurovic S, Melle I, Agartz I, Hall H, Timm S, Wang AG, Werge T (2007) Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2(9):e873

    PubMed Central  PubMed  Google Scholar 

  • Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206

    CAS  PubMed  Google Scholar 

  • Hebert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buee L, De Strooper B (2010) Genetic ablation of dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 19(20):3959–3969

    CAS  PubMed  Google Scholar 

  • Honardoost MA, Kiani-Esfahani A, Ghaedi K, Etemadifar M, Salehi M (2014) miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing-remitting multiple sclerosis. Gene 544(2):128–133

    CAS  PubMed  Google Scholar 

  • Horner RD, Kamins KG, Feussner JR, Grambow SC, Hoff-Lindquist J, Harati Y, Mitsumoto H, Pascuzzi R, Spencer PS, Tim R, Howard D, Smith TC, Ryan MA, Coffman CJ, Kasarskis EJ (2003) Occurrence of amyotrophic lateral sclerosis among gulf war veterans. Neurol 61(6):742–749

    CAS  Google Scholar 

  • Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A, Daube JR, Nance M, Fan C, Kaplan J, Hung WY, McKenna-Yasek D, Haines JL, Pericak-Vance MA, Horvitz HR, Brown RH Jr (2000) Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. Jama 284(13):1664–1669

    CAS  PubMed  Google Scholar 

  • Ince PG, Highley JR, Kirby J, Wharton SB, Takahashi H, Strong MJ, Shaw PJ (2011) Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol 122(6):657–671

    CAS  PubMed  Google Scholar 

  • Ishtiaq M, Campos-Melo D, Volkening K, Strong MJ (2014) Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis. PLoS One 9(1):e85653

    PubMed Central  PubMed  Google Scholar 

  • Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39(3):959–966

    CAS  PubMed  Google Scholar 

  • Jin XF, Wu N, Wang L, Li J (2013) Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol 33(5):601–613

    CAS  PubMed  Google Scholar 

  • Johansen C (2000) Exposure to electromagnetic fields and risk of central nervous system disease in utility workers. Epidemiol 11(5):539–543

    CAS  Google Scholar 

  • Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicol 30(5):761–765

    CAS  Google Scholar 

  • Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ (2008) A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 29(3):438–445

    CAS  PubMed  Google Scholar 

  • Johnston CA, Stanton BR, Turner MR, Gray R, Blunt AH, Butt D, Ampong MA, Shaw CE, Leigh PN, Al-Chalabi A (2006) Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol 253(12):1642–1643

    PubMed  Google Scholar 

  • Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40(5):572–574

    CAS  PubMed  Google Scholar 

  • Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955

    CAS  PubMed  Google Scholar 

  • Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22(20):4127–4135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kraemer M, Buerger M, Berlit P (2010) Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 112(2):103–105

    PubMed  Google Scholar 

  • Kurland LT, Mulder DW (1954) Epidemiologic investigations of amyotrophic lateral sclerosis. I. Preliminary report on geographic distribution and special reference to the Mariana Islands, including clinical and pathologic observations. Neurol 4(6):438–448

    CAS  Google Scholar 

  • Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Sci 323(5918):1205–1208

    CAS  Google Scholar 

  • Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/riluzole study group II. Lancet 347(9013):1425–1431

    CAS  PubMed  Google Scholar 

  • Leblond CS, Kaneb HM, Dion PA, Rouleau GA (2014) “Dissection of genetic factors associated with amyotrophic lateral sclerosis.” Exp Neurol

  • Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227(1):172–179

    CAS  PubMed  Google Scholar 

  • Liu T, Tang H, Lang Y, Liu M, Li X (2009) MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 273(2):233–242

    CAS  PubMed  Google Scholar 

  • Margis R, Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 152(3):96–101

    CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26(4):459–470

    CAS  PubMed  Google Scholar 

  • Menzies FM, Grierson AJ, Cookson MR, Heath PR, Tomkins J, Figlewicz DA, Ince PG, Shaw PJ (2002) Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem 82(5):1118–1128

    CAS  PubMed  Google Scholar 

  • Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011

    CAS  PubMed  Google Scholar 

  • Miller RG, Mitchell JD, Moore DH (2012) “Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND).”. Cochrane Database Syst Rev 3:Cd001447

    PubMed  Google Scholar 

  • Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20(15):3067–3078

    CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morahan JM, Pamphlett R (2006) Amyotrophic lateral sclerosis and exposure to environmental toxins: an Australian case–control study. Neuroepidemiology 27(3):130–135

    PubMed  Google Scholar 

  • Morita M, Al-Chalabi A, Andersen PM, Hosler B, Sapp P, Englund E, Mitchell JE, Habgood JJ, de Belleroche J, Xi J, Jongjaroenprasert W, Horvitz HR, Gunnarsson LG, Brown RH Jr (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurol 66(6):839–844

    CAS  Google Scholar 

  • Mulder DW, Kurland LT (1987) Motor neuron disease: epidemiologic studies. Adv Exp Med Biol 209:325–332

    CAS  PubMed  Google Scholar 

  • Murch SJ, Cox PA, Banack SA (2004) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc Natl Acad Sci U S A 101(33):12228–12231

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Sci 314(5796):130–133

    CAS  Google Scholar 

  • Nolan K, Mitchem MR, Jimenez-Mateos EM, Henshall DC, Concannon CG, Prehn JH (2014) Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci 53(2):231–241

    CAS  PubMed  Google Scholar 

  • Nzwalo H, de Abreu D, Swash M, Pinto S, de Carvalho M (2014) Delayed diagnosis in ALS: the problem continues. J Neurol Sci 343(1–2):173–175

    PubMed  Google Scholar 

  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paganoni S, Macklin EA, Lee A, Murphy A, Chang J, Zipf A, Cudkowicz M, Atassi N (2014) Diagnostic timelines and delays in diagnosing amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Frontotemporal Degener 15(5–6):453–456

    PubMed  Google Scholar 

  • Parisi C, Arisi I, D’Ambrosi N, Storti AE, Brandi R, D’Onofrio M, Volonte C (2013) “Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation.”. Cell Death Disease 4:e959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15(17):5473–5477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perry TL, Krieger C, Hansen S, Eisen A (1990) Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 28(1):12–17

    CAS  PubMed  Google Scholar 

  • Pradat PF, Dib M (2009) Biomarkers in amyotrophic lateral sclerosis: facts and future horizons. Mol Diagn Ther 13(2):115–125

    CAS  PubMed  Google Scholar 

  • Qureshi MM, Hayden D, Urbinelli L, Ferrante K, Newhall K, Myers D, Hilgenberg S, Smart R, Brown RH, Cudkowicz ME (2006) Analysis of factors that modify susceptibility and rate of progression in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler 7(3):173–182

    PubMed  Google Scholar 

  • Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robelin L, Gonzalez De Aguilar JL (2014) Blood biomarkers for amyotrophic lateral sclerosis: myth or reality? Biomed Res Int 2014:525097

    PubMed Central  PubMed  Google Scholar 

  • Roberts TC, Godfrey C, McClorey G, Vader P, Briggs D, Gardiner C, Aoki Y, Sargent I, Morgan JE, Wood MJ (2013) Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res 41(20):9500–9513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rothstein JD, Kuncl R, Chaudhry V, Clawson L, Cornblath DR, Coyle JT, Drachman DB (1991) Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann Neurol 30(2):224–225

    CAS  PubMed  Google Scholar 

  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38(1):73–84

    CAS  PubMed  Google Scholar 

  • Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Leger B, Ushida T, Cartoni R, Wadley GD, Hespel P, Kralli A, Soraru G, Angelini C, Akimoto T (2013) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 49:107–117

    CAS  PubMed  Google Scholar 

  • Sato K, Morimoto N, Deguchi K, Ikeda Y, Matsuura T, Abe K (2014) Seven amyotrophic lateral sclerosis patients diagnosed only after development of respiratory failure. J Clin Neurosci 21(8):1341–1343

    PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nat 455(7209):58–63

    CAS  Google Scholar 

  • Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ (1995) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegener 4(2):209–216

    CAS  Google Scholar 

  • Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 36(4):320–330

    CAS  PubMed  Google Scholar 

  • Spencer PS, Hugon J, Ludolph A, Nunn PB, Ross SM, Roy DN, Schaumburg HH (1987) Discovery and partial characterization of primate motor-system toxins. Ciba Found Symp 126:221–238

    CAS  PubMed  Google Scholar 

  • Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M, Meininger V (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193(2):73–78

    CAS  PubMed  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Sci 319(5870):1668–1672

    CAS  Google Scholar 

  • Srinivasan J, Scala S, Jones HR, Saleh F, Russell JA (2006) Inappropriate surgeries resulting from misdiagnosis of early amyotrophic lateral sclerosis. Muscle Nerve 34(3):359–360

    PubMed  Google Scholar 

  • Steenland K, Hein MJ, Cassinelli RT 2nd, Prince MM, Nilsen NB, Whelan EA, Waters MA, Ruder AM, Schnorr TM (2006) Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiol 17(1):8–13

    Google Scholar 

  • Sutedja NA, Veldink JH, Fischer K, Kromhout H, Heederik D, Huisman MH, Wokke JH, van den Berg LH (2009) Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler 10(5–6):302–309

    PubMed  Google Scholar 

  • Toivonen JM, Manzano R, Olivan S, Zaragoza P, Garcia-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 9(2):e89065

    PubMed Central  PubMed  Google Scholar 

  • Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O (2000) Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch Neurol 57(1):109–113

    CAS  PubMed  Google Scholar 

  • Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ (2013) Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurol 81(14):1222–1225

    CAS  Google Scholar 

  • Valdmanis PN, Dupre N, Bouchard JP, Camu W, Salachas F, Meininger V, Strong M, Rouleau GA (2007) Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. Arch Neurol 64(2):240–245

    PubMed  Google Scholar 

  • Vanacore N, Cocco P, Fadda D, Dosemeci M (2010) Job strain, hypoxia and risk of amyotrophic lateral sclerosis: results from a death certificate study. Amyotroph Lateral Scler 11(5):430–434

    PubMed  Google Scholar 

  • Vance C, Al-Chalabi A, Ruddy D, Smith BN, Hu X, Sreedharan J, Siddique T, Schelhaas HJ, Kusters B, Troost D, Baas F, de Jong V, Shaw CE (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain 129(Pt 4):868–876

    PubMed  Google Scholar 

  • Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Sci 323(5918):1208–1211

    CAS  Google Scholar 

  • Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332

    CAS  PubMed  Google Scholar 

  • Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3(7):e2557

    PubMed Central  PubMed  Google Scholar 

  • Weisskopf MG, O’Reilly EJ, McCullough ML, Calle EE, Thun MJ, Cudkowicz M, Ascherio A (2005) Prospective study of military service and mortality from ALS. Neurol 64(1):32–37

    CAS  Google Scholar 

  • Weisskopf MG, Morozova N, O’Reilly EJ, McCullough ML, Calle EE, Thun MJ, Ascherio A (2009) Prospective study of chemical exposures and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatr 80(5):558–561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Sci 326(5959):1549–1554

    CAS  Google Scholar 

  • Williams JR, Fitzhenry D, Grant L, Martyn D, Kerr DA (2013) Diagnosis pathway for patients with amyotrophic lateral sclerosis: retrospective analysis of the US Medicare longitudinal claims database. BMC Neurol 13:160

    PubMed Central  PubMed  Google Scholar 

  • Wong NK, He BP, Strong MJ (2000) Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol 59(11):972–982

    CAS  PubMed  Google Scholar 

  • Wuolikainen A, Hedenstrom M, Moritz T, Marklund SL, Antti H, Andersen PM (2009) Optimization of procedures for collecting and storing of CSF for studying the metabolome in ALS. Amyotroph Lateral Scler 10(4):229–236

    PubMed  Google Scholar 

  • Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM (2011) Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS One 6(4):e17947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wuolikainen A, Andersen PM, Moritz T, Marklund SL, Antti H (2012) ALS patients with mutations in the SOD1 gene have an unique metabolomic profile in the cerebrospinal fluid compared with ALS patients without mutations. Mol Genet Metab 105(3):472–478

    CAS  PubMed  Google Scholar 

  • Zhang B, Pan X (2009) RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117(2):231–240

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

FC, AM, and PJM acknowledge the Institut de l’Atlantique en Neurosciences Atlantic Institute (IANSAI) for instigating the collaborations that lead to this article.

Conflict of Interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Cloutier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cloutier, F., Marrero, A., O’Connell, C. et al. MicroRNAs as Potential Circulating Biomarkers for Amyotrophic Lateral Sclerosis. J Mol Neurosci 56, 102–112 (2015). https://doi.org/10.1007/s12031-014-0471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0471-8

Keywords

Navigation