Skip to main content

Advertisement

Log in

Brain microvascular pericytes in health and disease

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Pericytes are located at periphery of the microvessel wall and wrap it with their processes. They communicate with other cells of the neurovascular unit by direct contact or through signaling pathways and regulate several important microcirculatory functions. These include development and maintenance of the blood–brain barrier (BBB), distribution of the capillary blood flow to match the local metabolic need of the nearby cells, and angiogenesis. Pericytes also exhibit phagocytic activity and may function as pluripotent stem cells. Increasing evidence suggests a role for pericytes in a wide range of CNS diseases. They appear to be vulnerable to oxygen and nitrogen radical toxicity and have been shown to contract during cerebral ischemia and remain contracted despite reopening of the occluded artery. This causes impaired re-flow and may diminish the benefit of re-canalization therapies in stroke patients. Hyperglycemia-induced dysfunction of the signaling pathways between pericytes and endothelia is thought to play an important role in diabetic retinopathy, a common cause of blindness. Amyloid deposits detected within degenerating pericytes in the brains of patients with Alzheimer’s disease suggest that pericyte dysfunction may play a role in cerebral hypoperfusion and impaired amyloid β-peptide clearance in Alzheimer’s disease. This exciting possibility may reveal a novel temporal sequence of events in chronic neurodegeneration, in which microvascular dysfunction due to pericyte degeneration initiates secondary neurodegenerative changes. Identification of molecular mechanisms by which pericytes regulate BBB integrity in inflammatory conditions as well as in vasogenic brain edema may lead to new treatments. Pericytes may also take part in tissue repair and vascularization after CNS injury. In conclusion, although the evidence is just emerging and mostly preliminary, disclosing pericytes’ role in the pathophysiology of CNS diseases may yield exciting developments and novel treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M, Landegren U, Kjellen L, Bondjers G, Li JP, Lindahl U, Spillmann D, Betsholtz C, Gerhardt H (2007) Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21:316–331

    Article  PubMed  CAS  Google Scholar 

  2. Al Ahmad A, Gassmann M, Ogunshola OO (2009) Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol 218:612–622

    Article  PubMed  CAS  Google Scholar 

  3. Alliot F, Rutin J, Leenen PJ, Pessac B (1999) Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J Neurosci Res 58:367–378

    Article  PubMed  CAS  Google Scholar 

  4. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  PubMed  CAS  Google Scholar 

  5. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  PubMed  CAS  Google Scholar 

  6. Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G (2001) Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30:35–44

    Article  PubMed  CAS  Google Scholar 

  7. Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I, Streb JW, Guo H, Rubio A, Van Nostrand W, Miano JM, Zlokovic BV (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11:143–153

    Article  PubMed  CAS  Google Scholar 

  8. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427

    Article  PubMed  CAS  Google Scholar 

  9. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113

    Article  PubMed  CAS  Google Scholar 

  10. Bonkowski DKV, Balabanov RD, Borisov A, Dore-Duffy P (2011) The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 18:8

    Article  Google Scholar 

  11. Castejon OJ (1984) Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema. J Submicrosc Cytol 16:601–618

    PubMed  CAS  Google Scholar 

  12. Chen Q, Anderson DR (1997) Effect of CO2 on intracellular pH and contraction of retinal capillary pericytes. Invest Ophthalmol Vis Sci 38:643–651

    PubMed  CAS  Google Scholar 

  13. Claudio L, Raine CS, Brosnan CF (1995) Evidence of persistent blood–brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol 90:228–238

    Article  PubMed  CAS  Google Scholar 

  14. Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378

    PubMed  CAS  Google Scholar 

  15. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  PubMed  CAS  Google Scholar 

  16. de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190

    Article  PubMed  Google Scholar 

  17. De Silva DA, Fink JN, Christensen S, Ebinger M, Bladin C, Levi CR, Parsons M, Butcher K, Barber PA, Donnan GA, Davis SM (2009) Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke 40:2872–2874

    Article  PubMed  Google Scholar 

  18. Dehouck MP, Vigne P, Torpier G, Breittmayer JP, Cecchelli R, Frelin C (1997) Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries. J Cereb Blood Flow Metab 17:464–469

    Article  PubMed  CAS  Google Scholar 

  19. del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894

    Article  PubMed  Google Scholar 

  20. Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 26:613–624

    Article  PubMed  CAS  Google Scholar 

  21. Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10:53–63

    PubMed  CAS  Google Scholar 

  22. Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21:4307–4316

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci USA 107:22290–22295

    Article  PubMed  CAS  Google Scholar 

  24. Frank RN, Dutta S, Mancini MA (1987) Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci 28:1086–1091

    PubMed  CAS  Google Scholar 

  25. Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J (1994) Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol 145:728–740

    PubMed  CAS  Google Scholar 

  26. GE S, Song L, Pachter JS (2005) Where is the blood–brain barrier... really? J Neurosci Res 79:421–427

    Article  PubMed  CAS  Google Scholar 

  27. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306

    Article  PubMed  CAS  Google Scholar 

  28. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  29. Gerhardt H, Wolburg H, Redies C (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479

    Article  PubMed  CAS  Google Scholar 

  30. Gursoy-Ozdemir Y, Bolay H, Saribas O, Dalkara T (2000) Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 31:1974–1980

    Article  PubMed  CAS  Google Scholar 

  31. Gursoy-Ozdemir Y, Can A, Dalkara T (2004) Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35:1449–1453

    Article  PubMed  Google Scholar 

  32. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329

    Article  PubMed  CAS  Google Scholar 

  33. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2:5

    PubMed  Google Scholar 

  34. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    Article  PubMed  CAS  Google Scholar 

  35. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  36. Ho KL (1985) Ultrastructure of cerebellar capillary hemangioblastoma. IV. Pericytes and their relationship to endothelial cells. Acta Neuropathol 67:254–264

    Article  PubMed  CAS  Google Scholar 

  37. Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26:1057–1083

    Article  PubMed  Google Scholar 

  38. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  39. Iadecola C (2010) The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 120:287–296

    Article  PubMed  Google Scholar 

  40. Joyce NC, Haire MF, Palade GE (1985) Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol 100:1387–1395

    Article  PubMed  CAS  Google Scholar 

  41. Kamouchi M, Ago T, Kitazono T (2011) Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 31:175–193

    Google Scholar 

  42. Kamouchi M, Kitazono T, Ago T, Wakisaka M, Kuroda J, Nakamura K, Hagiwara N, Ooboshi H, Ibayashi S, Iida M (2007) Hydrogen peroxide-induced Ca2+ responses in CNS pericytes. Neurosci Lett 416:12–16

    Article  PubMed  CAS  Google Scholar 

  43. Kamouchi M, Kitazono T, Ago T, Wakisaka M, Ooboshi H, Ibayashi S, Iida M (2004) Calcium influx pathways in rat CNS pericytes. Brain Res Mol Brain Res 126:114–120

    Article  PubMed  CAS  Google Scholar 

  44. Kim JH, Yu YS, Kim DH, Kim KW (2009) Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res 87:653–659

    Article  PubMed  CAS  Google Scholar 

  45. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58:1–10

    Article  PubMed  Google Scholar 

  46. Le Beux YJ, Willemot J (1978) Actin- and myosin-like filaments in rat brain pericytes. Anat Rec 190:811–826

    Article  PubMed  CAS  Google Scholar 

  47. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  48. Little JR, Kerr FW, Sundt TM Jr (1975) Microcirculatory obstruction in focal cerebral ischemia. Relationship to neuronal alterations. Mayo Clin Proc 50:264–270

    PubMed  CAS  Google Scholar 

  49. Liwnicz BH, Leach JL, Yeh HS, Privitera M (1990) Pericyte degeneration and thickening of basement membranes of cerebral microvessels in complex partial seizures: electron microscopic study of surgically removed tissue. Neurosurgery 26:409–420

    Article  PubMed  CAS  Google Scholar 

  50. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  PubMed  CAS  Google Scholar 

  51. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Article  PubMed  Google Scholar 

  52. Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Shono Y, Hagiwara N, Ago T, Ooboshi H, Ibayashi S, Iida M (2009) Amiloride inhibits hydrogen peroxide-induced Ca2+ responses in human CNS pericytes. Microvasc Res 77:327–334

    Article  PubMed  CAS  Google Scholar 

  53. Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113:147–154

    Article  PubMed  CAS  Google Scholar 

  54. Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–249

    Article  PubMed  CAS  Google Scholar 

  55. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  PubMed  CAS  Google Scholar 

  56. Puro DG (2007) Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation 14:1–10

    Article  PubMed  CAS  Google Scholar 

  57. Rouget C (1873) Memoiresurledeveloppement, lastructureetles proprietes physiologiques des capillaires sanguins et lymphatiques. Arch Physiol Norm Path 5:603–663

    Google Scholar 

  58. Sato Y (1995) Activation of latent TGF-beta at the vascular wall—roles of endothelial cells and mural pericytes or smooth muscle cells. J Atheroscler Thromb 2:24–29

    PubMed  CAS  Google Scholar 

  59. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    PubMed  CAS  Google Scholar 

  60. Sims DE (1986) The pericyte—a review. Tissue Cell 18:153–174

    Article  PubMed  CAS  Google Scholar 

  61. Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27:842–846

    Article  PubMed  CAS  Google Scholar 

  62. Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37:315–321

    Article  PubMed  CAS  Google Scholar 

  63. Soares BP, Tong E, Hom J, Cheng SC, Bredno J, Boussel L, Smith WS, Wintermark M (2010) Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke 41:e34–e40

    Article  PubMed  Google Scholar 

  64. Szpak GM, Lewandowska E, Wierzba-Bobrowicz T, Bertrand E, Pasennik E, Mendel T, Stepien T, Leszczynska A, Rafalowska J (2007) Small cerebral vessel disease in familial amyloid and non-amyloid angiopathies: FAD-PS-1 (P117L) mutation and CADASIL. Immunohistochemical and ultrastructural studies. Folia Neuropathol 45:192–204

    PubMed  CAS  Google Scholar 

  65. Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31:42–57

    Article  PubMed  CAS  Google Scholar 

  66. Toribatake Y, Tomita K, Kawahara N, Baba H, Ohnari H, Tanaka S (1997) Regulation of vasomotion of arterioles and capillaries in the cat spinal cord: role of alpha actin and endothelin-1. Spinal Cord 35:26–32

    Article  PubMed  CAS  Google Scholar 

  67. Verbeek MM, de Waal RM, Schipper JJ, Van Nostrand WE (1997) Rapid degeneration of cultured human brain pericytes by amyloid beta protein. J Neurochem 68:1135–1141

    Article  PubMed  CAS  Google Scholar 

  68. Wahlgren N, Ahmed N, Davalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, Lees KR, Roine RO, Soinne L, Toni D, Vanhooren G (2007) Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. Lancet 369:275–282

    Article  PubMed  CAS  Google Scholar 

  69. Wilhelmus MM, Otte-Holler I, van Triel JJ, Veerhuis R, Maat-Schieman ML, Bu G, de Waal RM, Verbeek MM (2007) Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol 171:1989–1999

    Article  PubMed  CAS  Google Scholar 

  70. Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32

    Article  PubMed  Google Scholar 

  71. Wisniewski HM, Wegiel J, Wang KC, Lach B (1992) Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease. Acta Neuropathol 84:117–127

    Article  PubMed  CAS  Google Scholar 

  72. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037

    Article  PubMed  CAS  Google Scholar 

  73. Zimmermann K (1923) Der feinere Bau der Blutkapillaren. Z Anat Entwicklungsgesch 68:29–109

    Article  Google Scholar 

  74. Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16:1370–1371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories is supported by The Turkish Academy of Sciences (T.D. and Y.G.-O.), Hacettepe University Research Fund 0401105001 (T.D.), Scientific and Technical Research Council of Turkey 104S254 (Y.G.-O.), and Brain Research Association (M.Y.). Authors are grateful to Kivilcim Kilic for her expert help with preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Dalkara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalkara, T., Gursoy-Ozdemir, Y. & Yemisci, M. Brain microvascular pericytes in health and disease. Acta Neuropathol 122, 1–9 (2011). https://doi.org/10.1007/s00401-011-0847-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0847-6

Keywords

Navigation