Skip to main content

Advertisement

Log in

Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

TDP-43, encoded by TARDBP, is a ubiquitously expressed, primarily nuclear protein. In recent years, TDP-43 has been identified as the major pathological protein in ALS due to its mislocalisation in the cytoplasm of motor neurons of patients with and without TARDBP mutations and expression in forms that do not match its predicted molecular weight. In this study, the TDP-43 profile was investigated using western immunoblot analysis in whole lysates, nuclei and cytoplasm of circulating lymphomonocytes from 16 ALS patients, 4 with (ALS/TDP+) and 12 without (ALS/TDP−) TARDBP mutations in the protein C-terminal domain, and thirteen age-matched, healthy donors (controls). Three disease-unaffected first-degree relatives of an ALS/TDP+ patient were also included: one carried the parent mutation (Rel/TDP+) whereas the other two did not (Rel/TDP−). In all ALS patients, relatives and controls, TDP-43 retained the predicted molecular weight in whole cell lysates and nuclei, but in the cytoplasm its molecular weight was slightly smaller than expected. In quantitative terms, TDP-43 was expressed at approximately the same levels in whole cell lysates of ALS patients, relatives and controls. In contrast, TDP-43 accumulated in the cytoplasm with concomitant nuclear depletion in all ALS/TDP+ patients, in about 50% of ALS/TDP− patients and in the Rel/TDP+ subject compared to the controls. In the remaining ALS/TDP− patients and in the two Rel/TDP− subjects, TDP-43 matched the control levels in both subcellular compartments. Were these findings further confirmed, circulating lymphomonocytes could be informative of TDP-43 mislocalisation in nervous tissue and used as a biomarker for future disease risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  PubMed  CAS  Google Scholar 

  2. Ayala YM, Zago P, D’Ambrogio A et al (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–3785

    Article  PubMed  CAS  Google Scholar 

  3. Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30:639–649

    Article  PubMed  CAS  Google Scholar 

  4. Beleza-Meireles A, Al-Chalabi A (2009) Genetic studies of amyotrophic lateral sclerosis: Controversies and perspectives. Amyotroph Lateral Scler 10:1–14

    Article  PubMed  CAS  Google Scholar 

  5. Bendotti C, Carrì MT (2009) Amyotrophic lateral sclerosis: mechanisms and countermeasures. Antioxid Redox Signal 11:1519–1522

    Article  PubMed  CAS  Google Scholar 

  6. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    Article  PubMed  CAS  Google Scholar 

  7. Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280:37572–37584

    Article  PubMed  CAS  Google Scholar 

  8. Chiò A, Logroscino G, Hardiman O et al (2009) Prognostic factors in ALS. A critical review. Amyotroph Lateral Scler 10:310–323

    Article  PubMed  Google Scholar 

  9. Corrado L, Ratti A, Gellera C et al (2009) High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat 30:688–694

    Article  PubMed  CAS  Google Scholar 

  10. D’Ambrogio A, Buratti E, Stuani C et al (2009) Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 37:4116–4126

    Article  PubMed  Google Scholar 

  11. Davidson Y, Kelley T, Mackenzie IR et al (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113:521–533

    Article  PubMed  CAS  Google Scholar 

  12. Del Bo R, Ghezzi S, Corti S et al (2009) TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations. Eur J Neurol 16:727–732

    Article  PubMed  CAS  Google Scholar 

  13. Forman MS, Trojanowski JQ, Lee VM (2007) TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol 17:548–555

    Article  PubMed  CAS  Google Scholar 

  14. Foulds PG, Davidson Y, Mishra M et al (2009) Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol 118:647–658

    Article  PubMed  CAS  Google Scholar 

  15. Foulds P, McAuley E, Gibbons L et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116:141–146

    Article  PubMed  CAS  Google Scholar 

  16. Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120

    Article  PubMed  CAS  Google Scholar 

  17. Gendron TF, Josephs KA, Petrucelli L (2010) Review: transactive response DNA-binding protein 43 (TDP-43); mechanisms of neurodegeneration. Neuropathol Appl Neurobiol 36:97–112

    PubMed  CAS  Google Scholar 

  18. Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641

    Article  PubMed  Google Scholar 

  19. Giordana MT, Piccinini M, Grifoni S et al (2010) TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol 20:351–360

    Article  PubMed  CAS  Google Scholar 

  20. Gros-Louis F, Gaspar C, Rouleau GA (2006) Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:956–972

    PubMed  CAS  Google Scholar 

  21. Hasegawa M, Arai T, Nonaka T et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70

    Article  PubMed  CAS  Google Scholar 

  22. Igaz LM, Kwong LK, Chen-Plotkin A et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284:8516–8524

    Article  PubMed  CAS  Google Scholar 

  23. Igaz LM, Kwong LK, Xu Y et al (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173:182–194

    Article  PubMed  CAS  Google Scholar 

  24. Ilieva EV, Ayala V, Jové M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123

    Article  PubMed  Google Scholar 

  25. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284:20329–20339

    Article  PubMed  CAS  Google Scholar 

  26. Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    Article  PubMed  CAS  Google Scholar 

  27. Kasai T, Tokuda T, Ishigami N et al (2009) Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 117:55–62

    Article  PubMed  CAS  Google Scholar 

  28. Lagier-Tourenne C, Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136:1001–1004

    Article  PubMed  CAS  Google Scholar 

  29. Liscic RM, Grinberg LT, Zidar J, Gitcho MA, Cairns NJ (2008) ALS and FTLD: two faces of TDP-43 proteinopathy. Eur J Neurol 15:772–780

    Article  PubMed  CAS  Google Scholar 

  30. Mackenzie IR, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434

    Article  PubMed  CAS  Google Scholar 

  31. Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4

    Article  PubMed  Google Scholar 

  32. Mackenzie IR, Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21:693–700

    Article  PubMed  CAS  Google Scholar 

  33. Nardo G, Pozzi S, Mantovani S et al (2009) Nitroproteomics of peripheral blood mononuclear cells from patients and a rat model of ALS. Antioxid Redox Signal 11:1559–1567

    Article  PubMed  CAS  Google Scholar 

  34. Neumann M (2009) Molecular neuropathology of TDP-43 proteinopathies. Int J Mol Sci 10:232–246

    Article  PubMed  CAS  Google Scholar 

  35. Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149

    Article  PubMed  CAS  Google Scholar 

  36. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  37. Nishihira Y, Tan CF, Onodera O et al (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116:169–182

    Article  PubMed  CAS  Google Scholar 

  38. Nishimoto Y, Ito D, Yagi T, Nihei Y, Tsunoda Y, Suzuki N (2010) Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein. J Biol Chem 285:608–619

    Article  PubMed  CAS  Google Scholar 

  39. Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18:3353–3364

    Article  PubMed  CAS  Google Scholar 

  40. Ou SH, Wu F, Harrich D, García-Martínez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69:3584–3596

    PubMed  CAS  Google Scholar 

  41. Pesiridis GS, Lee VM, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18(R2):R156–R162

    Article  PubMed  CAS  Google Scholar 

  42. Piccinini M, Mostert M, Seardo MA et al (2009) Pregnancy induces molecular alterations reflecting impaired insulin control over glucose oxidative pathways that only in women with a family history of Type 2 diabetes last beyond pregnancy. J Endocrinol Invest 32:6–12

    PubMed  CAS  Google Scholar 

  43. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    Article  PubMed  CAS  Google Scholar 

  44. Rutherford NJ, Zhang YJ, Baker M et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4:e1000193

    Article  PubMed  Google Scholar 

  45. Sanelli T, Xiao S, Horne P, Bilbao J, Zinman L, Robertson J (2007) Evidence that TDP-43 is not the major ubiquitinated target within the pathological inclusions of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66:1147–1153

    Article  PubMed  Google Scholar 

  46. Siddique T, Nijhawan D, Hentati A (1997) Familial amyotrophic lateral sclerosis. J Neural Transm Suppl 49:219–233

    PubMed  CAS  Google Scholar 

  47. Soraru G, Orsetti V, Buratti E et al (2009) TDP-43 in skeletal muscle of patients affected with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 20:1–5

    Article  Google Scholar 

  48. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  49. Steinacker P, Hendrich C, Sperfeld AD et al (2008) TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 65:1481–1487

    Article  PubMed  Google Scholar 

  50. Strong MJ, Volkening K, Hammond R et al (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35:320–327

    Article  PubMed  CAS  Google Scholar 

  51. Suzuki M, Mikami H, Watanabe T et al (2010) Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand 122:367–372

    Google Scholar 

  52. Tamaoka A, Arai M, Itokawa M et al (2010) TDP-43 M337 V mutation in familial amyotrophic lateral sclerosis in Japan. Intern Med 49:331–334

    Article  PubMed  Google Scholar 

  53. Tan CF, Eguchi H, Tagawa A et al (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 113:535–542

    Article  PubMed  CAS  Google Scholar 

  54. Taylor CM, Coetzee T, Pfeiffer SE (2002) Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem 81:993–1004

    Article  PubMed  CAS  Google Scholar 

  55. Ticozzi N, Ratti A, Silani V (2010) Protein aggregation and defective RNA metabolism for motor neuron damage. CNS Neurol Disord Drug Targets 9:285–296

    PubMed  CAS  Google Scholar 

  56. Valdmanis PN, Daoud H, Dion PA, Rouleau GA (2009) Recent advances in the genetics of amyotrophic lateral sclerosis. Curr Neurol Neurosci Rep 9:198–205

    Article  PubMed  CAS  Google Scholar 

  57. Van Deerlin VM, Leverenz JB, Bekris LM et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7:409–416

    Article  PubMed  Google Scholar 

  58. Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83:130–139

    Article  PubMed  CAS  Google Scholar 

  59. Williams KL, Durnall JC, Thoeng AD, Warraich ST, Nicholson GA, Blair IP (2009) A novel TARDBP mutation in an Australian amyotrophic lateral sclerosis kindred. J Neurol Neurosurg Psychiatry 80:286–1288

    Google Scholar 

  60. Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283:13302–13309

    Article  PubMed  CAS  Google Scholar 

  61. Yokoseki A, Shiga A, Tan CF et al (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542

    Article  PubMed  CAS  Google Scholar 

  62. Zhang H, Tan CF, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K (2008) TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 115:115–122

    Article  PubMed  CAS  Google Scholar 

  63. Zhang YJ, Xu YF, Dickey CA et al (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27:10530–10534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Compagnia di San Paolo, Turin (Italy), Grant No. 2004.1424, and Regione Piemonte (Italy), Grant No. 204.2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Rinaudo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Marco, G., Lupino, E., Calvo, A. et al. Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol 121, 611–622 (2011). https://doi.org/10.1007/s00401-010-0786-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0786-7

Keywords

Navigation