Skip to main content
Log in

Rheology of microgels in single particle confinement

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, we investigate the shear rheology of Carbopol 981 microgel particle suspensions, confined between shearing plates with gap separations from 5 to 100 μm. We show that even for confining gaps smaller than that of the gel particle size, the yielding of concentrated microgel suspensions is delayed to stress levels above the bulk yield stress. Furthermore, for stresses below this new yield point, slip is described by elastohydrodynamic lubrication theory as long as the direct confinement of the single gel particles between the shearing surfaces is limited to a Hertzian deformation. For a strong, non-Hertzian particle deformation, the slip layer breaks down and leads to a frictional interaction of the single confined particle with the two shearing surfaces, depending on their surface roughness. Lubrication pressures and friction coefficients have been quantified with in situ normal force measurements on the confined particles, which have also been utilized to unambiguously determine the relevant swollen particle dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Baik SJ, Moldenaers P, Clasen C (2011) A sliding plate microgap rheometer for the simultaneous measurement of shear stress first normal stress difference. Rev Sci Instrum 035(3):121

    Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newtonian Fluid Mech 56(3):221–251

    Article  Google Scholar 

  • Bird R, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids: Fluid mechanics. Dynamics of Polymeric Liquids. Wiley

  • Black WB, Graham MD (1999) Effect of wall slip on the stability of viscoelastic plane shear flow. Phys Fluids 11(7):1749–1756

    Article  Google Scholar 

  • Boersma WH, Baets PJM, Laven J, Stein HN (1991) Time-dependent behavior and wall slip in concentrated shear thickening dispersions. J Rheol 35(6):1093–1120

    Article  Google Scholar 

  • Borrega R, Cloitre M, Betremieux I, Ernst B, Leibler L (1999) Concentration dependence of the low-shear viscosity of polyelectrolyte micro-networks: from hard spheres to soft microgels. Europhys Lett 47 (6):729–735

    Article  Google Scholar 

  • Carnali JO, Naser MS (1992) The use of dilute solution viscometry to characterize the network properties of carbopol microgels. Colloid Polym Sci 2(270):183–193

    Article  Google Scholar 

  • Chan PCH, Leal LG (1979) The motion of a deformable drop in a second-order fluid. J Fluid Mech 92 (01):131–170

    Article  Google Scholar 

  • Chang GS, Koo JS, Song KW (2003) Wall slip of vaseline in steady shear rheometry. Korea-Australia J Rheol 15(2):55–61

    Google Scholar 

  • Citerne GP, Carreau PJ, Moan M (2001) Rheological properties of peanut butter. Rheol Acta 40(1):86–96

    Article  Google Scholar 

  • Clasen C (2012) Determining the true slip of a yield stress material with a sliding plate rheometer. Rheol Acta 51(10):883–890

    Article  Google Scholar 

  • Clasen C (2013a) High shear rheometry using hydrodynamic lubrication flows. J Rheol 57:197–221

  • Clasen C (2013b) A self-aligning parallel plate (SAPP) fixture for tribology and high shear rheometry. Rheol Acta 52:191–200

  • Clasen C, McKinley GH (2004) Gap-dependent microrheometry of complex liquids. J Non-Newtonian Fluid Mech 124(1):1–10

    Article  Google Scholar 

  • Clasen C, Gearing BP, McKinley GH (2006) The flexure-based microgap rheometer (FMR). J Rheol 50 (6):883–905

    Article  Google Scholar 

  • Clasen C, Kavehpour H, McKinley G (2010) Bridging tribology and microrheology of thin films. J Appl Rheol 45(4):049

    Google Scholar 

  • Cloitre M, Borrega R, Monti F, Leibler L (2003) Glassy dynamics and flow properties of soft colloidal pastes. Phys Rev Lett 068(6):303

    Google Scholar 

  • Coussot PJ (2005) Rheometry of pasted suspensions, and granular materials: Applications in industry and environment. Wiley-Interscience

  • Das M, Zhang H, Kumacheva E (2006) Microgels: Old materials with new applications. Ann Rev Mater Res 36(1):117–142

    Article  Google Scholar 

  • Davies GA, Stokes JR (2008) Thin film and high shear rheology of multiphase complex fluids. J Non-Newtonian Fluid Mech 148 (1-3):73–87

    Article  Google Scholar 

  • De Vicente J, Stokes J, Spikes H (2006) Soft lubrication of model hydrocolloids. Food Hydrocolloids 20 (4):483–491

    Article  Google Scholar 

  • Deen W (1998) Analysis of transport phenomena. Topics in chemical engineering. Oxford University Press, USA

    Google Scholar 

  • Dhinojwala A, Granick S (1997) Micron-gap rheo-optics with parallel plates. J Chem Phys 107(20):8664–8667

    Article  Google Scholar 

  • Divoux T, Tamarii D, Baretin C, Manneville S (2010) Soft lubrication of model hydrocolloids. Phys Rev Lett 104(208):301

    Google Scholar 

  • Divoux T, Grenard V, Manneville S (2013) Rheological hysteresis in soft glassy materials. Phys Rev Lett 110(018):304

    Google Scholar 

  • Douglas JF (2013) Influence of chain structure and swelling on the elasticity of rubbery materials: Localization model description. Macromol Symp 329(1):87–100

    Article  Google Scholar 

  • Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre biopolymer samples: Non-newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7(22):10889–10898

    Article  Google Scholar 

  • Fernandez-Nieves A, Marquez M (2000) Electrophoresis of ionic microgel particles: from charged hard spheres to polyelectrolyte-like behavior. J Chem Phys 084(8):702

    Google Scholar 

  • Fernandez-Nieves A, FB A (2000) Motion of microgel particles under an external electric field motion of microgel particles under an external electric field. J Phys: Condens Matter 12(5):3605–3614

    Google Scholar 

  • Gearing BP, Anand L (2001) A novel testing apparatus for tribological studies at the small scale. Micro-electro-mechanical Systems (MEMS). Am Soc Mech Eng 354:259

    Google Scholar 

  • Gutowski IA, De Bruyn JR D, Frisken BJ (2012) Scaling and mesostructure of carbopol dispersions. Rheol Acta 51(5):441–450

    Article  Google Scholar 

  • Henson DJ, Mackay ME (1995) Effect of gap on the viscosity of monodisperse polystyrene melts: Slip effects. J Rheol 39(2):359–373

    Article  Google Scholar 

  • Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37(7):2544–2550

    Article  Google Scholar 

  • Kaneda I, Vincent B (2004) Swelling behavior of PMMA-g-PEO microgel particles by organic solvents. J Colloid Interf Sci 274(1):49–54

    Article  Google Scholar 

  • Kavehpour H, McKinley G (2004) Tribo-rheometry: from gap-dependent rheology to tribology. Tribol Lett 17(2):327–335

    Article  Google Scholar 

  • Lee D, Gutowski IA, Bailey AE, Rubatat L, De Bruyn JR, Frisken BJ (2011) Investigating the microstructure of a yield-stress fluid by light scattering. Phys Rev E Stat, Nonlinear, Soft Matter Phys 031(3):401

    Google Scholar 

  • Lubrizol (2013). www.lubrizol.com/personalcare/products/carbopol/981.html

  • Luo W, Yu Ch, Lieu ZZ, Allard J, Mogilner A, Sheetz MP, Bershadsky AD (2013) Analysis of the local organization and dynamics of cellular actin networks. J Cell Biol 202(7):1057–1073

    Article  Google Scholar 

  • Mark J (2007) Physical properties of polymers handbook. Springer, London

    Book  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in pastes of soft particles: Direct observation and rheology. J Rheol 48(6):1295–1320

    Article  Google Scholar 

  • Migler KB, Hervet H, Leger L (1993) Slip transition of a polymer melt under shear-stress. Phys Rev Lett 70(3):287–290

    Article  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2(1):210–222

    Article  Google Scholar 

  • Navier C (1823) On the laws of movement of fluids. Acad R Des Sci Inst France 6:389–440

    Google Scholar 

  • Neyret S, Vincent B (1997) The properties of polyampholyte microgel particles prepared by microemulsion polymerization. Polymer 38(25):6129–6134

    Article  Google Scholar 

  • Oppong FK, De Bruyn JR (2011) Mircorheology and jamming in a yield-stress fluid. Rheol Acta 50 (4):317–326

    Article  Google Scholar 

  • Park SK, Kim JY, Song JY, Lee EJ (2003) Rheological properties and microstructures of carbopol gel network system. Colloid Polym Sci 281(7):614–623

    Article  Google Scholar 

  • Pfleiderer P, Baik SJ, Zhang Z, Vleminckx G, Lettinga MP, Grelet E, Vermant J, Clasen C (2014) X-ray scattering in the vorticity direction and rheometry from confined fluids. Rev Sci Inst 85(6):0656108

    Article  Google Scholar 

  • Piau JM (2007) Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges meso-and macroscopic properties, constitutive equations and scaling laws. J Non-Newtonian Fluid Mech 144(1):1–29

    Article  Google Scholar 

  • Pich A, Lu Y, Boyko V, Richter aAKF S, Adler HJP (2004) Thermo-sensitive poly(n-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels. 3. incorporation of polypyrrole by selective microgel swelling in ethanolwater mixtures. Polymer 45(4):1079–1087

    Article  Google Scholar 

  • Poumaere A, Moyers-Gonzalez M, Castelain C, Burghelea T (2014) Unsteady laminar flows of a carbopol gel in the presence of wall slip. J Non-Newtonian Fluid Mech 205:28–40

    Article  Google Scholar 

  • Reimers M, Dealy JM (1998) Sliding plate rheometer studies of concentrated polystyrene solutions: Non-linear viscoelasticity and wall slip of two high molecular weight polymers in tricresyl phosphate. J Rheol 42(3):527–548

    Article  Google Scholar 

  • Roberts GP, Barnes HA (2001) New measurements of the flow-curves for carbopol dispersions without slip artifacts. Rheol Acta 40(5):499–503

    Article  Google Scholar 

  • Saunders BR, Vincent B (1999) Microgel particles as model colloids: Theory, properties and applications. Adv Colloid Interface Sci 80(1):1–25

    Article  Google Scholar 

  • Sawai T, Yamazaki IY S, Ikariyama Y, Aizawa M (1992) Electrical control of reversible microgel flocculation and its estimated performance as a display device. J Electroanal Chem 322(1–2): 1–7

    Article  Google Scholar 

  • Seth J, Cloitre M, Bonnecaze R (2008) Influence of short range forces on wall-slip in microgel pastes. J Rheol 52(5):1241– 1268

    Article  Google Scholar 

  • Seth JR, Locatelli-Champagne C, Monti F, Bonnecaze RT, Cloitre M (2012) How do soft particle glasses yield and flow near a solid surface? Soft Matter 8:140–148

    Article  Google Scholar 

  • Stefan J (1875) Versuche Uber die scheinbare Adhasion, vol 230

  • Vleminckx G, Clasen C (2014) The dark side of microrheology: Non-optical techniques. Curr Opin Colloid Interface Sci 19 :503–513

    Article  Google Scholar 

  • Yan Y, Zhang Z, Cheneler D, Stokes JR, Adams MJ (2009) The influence of flow confinement on the rheological properties of complex fluids. Rheol Acta 49(3):255–266

    Article  Google Scholar 

  • Yoshimura A, Prud’homme RK (1988) Wall slip corrections for couette and parallel disk viscometers. J Rheol 32(1):53–67

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support by FWO (Research Foundation Flanders, FWO project G.0543.10N and G.0364.08). We would also like to thank Wouter Sempels and Raf De Dier for their help in confocal microscopy imaging, as well as Stijn Coertjens for his help on the image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Clasen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jofore, B.D., Erni, P., Vleminckx, G. et al. Rheology of microgels in single particle confinement. Rheol Acta 54, 581–600 (2015). https://doi.org/10.1007/s00397-015-0852-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0852-0

Keywords

Navigation