Skip to main content
Log in

Rheo NMR and shear banding

  • Review
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The phenomenon of shear banding in complex fluids has been investigated using NMR velocimetry and NMR spectroscopy, mostly in wormlike micelle systems, but more recently in colloidal systems and multilayer vesicles. A particular advantage of NMR is the ability to simultaneously investigate structural ordering and to compare such ordering with local strain rates. In this paper, we describe the basics of Rheo-NMR and summarise its recent application to the study of shear banding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abragram A (1961) The principles of nuclear magnetism. Clarendon Press, Oxford, UK

    Google Scholar 

  • Baudez JC, Rodts S, Chateau X, Coussot P (2004) New technique for reconstructing instantaneous velocity profiles from viscometric tests: Application to pasty materials. J Rheol 48:69–82

    Article  CAS  Google Scholar 

  • Becu L, Manneville S, Colin A (2004) Spatiotemporal dynamics of wormlike micelles under shear. Phys Rev Lett 93:018301

    Article  Google Scholar 

  • Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 47:1211–1226

    Article  CAS  Google Scholar 

  • Berret J-F, Roux DC (1995) Rheology of nematic wormlike micelles. J Rheol 39:725–741

    Article  CAS  Google Scholar 

  • Berret J-F, Appell J, Porte G (1993) Linear rheology of entangled wormlike micelles. Langmuir 9:2851–2854

    Article  CAS  Google Scholar 

  • Berret J-F, Roux DC (1994) Porte G Isotropic-to-nematic transition in wormlike micelles under shear. J Phys II France 4:1261–1279

    Article  CAS  Google Scholar 

  • Britton MM, Callaghan PT (1997a) Two-phase shear band structures at uniform stress. Phys Rev Lett 78:4930–4933

    Article  CAS  Google Scholar 

  • Britton MM, Callaghan PT (1997b) NMR visualisation of anomalous flow in cone-and-plate rheometry. J Rheol 41:1365–1386

    Article  CAS  Google Scholar 

  • Britton MM, Callaghan PT (1999) Shear banding instability in wormlike micellar solutions. Eur Phys J B7:37–249

    Google Scholar 

  • Callaghan PT (1991) Principles of NMR Microscopy., Oxford University Press, (published in paperback, 1993) pp 492

  • Callaghan PT (1999) Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys 62:599–670

    Article  CAS  Google Scholar 

  • Callaghan PT, Stepisnik J (1995) Frequency domain analysis of spin motion using modulated gradient NMR. J Magn Reson A117:118–122

    Google Scholar 

  • Callaghan PT, Gil AM (2000) Rheo-NMR of semi-dilute polyacrylamide in water. Macromolecules 33:4116–4124

    Article  CAS  Google Scholar 

  • Callaghan PT, Eccles CD, Xia Y (1988) NMR Microscopy of Dynamic Displacements: k-space and q-space imaging. J Phys E 21:820–822

    Article  CAS  Google Scholar 

  • Callaghan PT, Cates ME, Rofe CJ, Smeulders JBAF (1996) A study of the “Spurt Effect” in wormlike micelles using nuclear magnetic resonance microscopy. J Phys II 6:375–393

    Article  CAS  Google Scholar 

  • Cappelaere E, Berret J-F, Decruppe JP, Cressely R, Lindner P (1997) Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition. Phys Rev E 56:1869–1878

    Article  CAS  Google Scholar 

  • Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296

    Article  CAS  Google Scholar 

  • Cates ME (1988) Dynamics of Living Polymers and flexible surfactant micelles: scaling laws for dilution. J Phys France 49:1593–1600

    Article  Google Scholar 

  • Cates ME (1990) “Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J Phys Chem 94:371–375

    Article  CAS  Google Scholar 

  • Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant solutions. J Phys Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

  • Cates ME, McLeish TCB, Marrucci G (1993) The rheology of entangled polymers at very high shear rates. Europhys Lett 21:451–456

    Article  CAS  Google Scholar 

  • Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, Jarny S, Lesueur D (2002) Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett 88:218301

    Article  CAS  Google Scholar 

  • Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behavior in pastes. J Rheol 50:975–994

    Article  CAS  Google Scholar 

  • Decruppe JP, Cressely R, Makhloufi R, Cappelaere E (1995) Flow birefringence experiments showing a shear banding structure in a CTAB solution. Colloid and Polym Sci 275:346–351

    Article  Google Scholar 

  • Douglass BS, Colby RH, Madsen LA, Callaghan PT (2007) Rheo-NMR of wormlike micelles formed from non-ionic pluronic surfactants. Macromolecules (in press)

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford

    Google Scholar 

  • Fielding SM (2005) Linear instability of planar shear banded flow. Phys Rev Lett 95:134501

    Article  CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2003a) Flow phase diagrams for concentration-coupled shear banding. Eur Phys J E 11:65–83

    Article  CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2003b) Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities. Phys Rev Lett 90:224501

    Article  CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2003c) Kinetics of the shear banding instability in startup flows. Phys Rev E 68:036313

    Article  CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2004) Spatiotemporal oscillations and rheochaos in a simple model of shear banding. Phys Rev Lett 92:084502

    Article  CAS  Google Scholar 

  • Fielding SM, Olmsted PD (2006) Nonlinear dynamics of an interface between shear bands. Phys Rev Lett 96:104502

    Article  CAS  Google Scholar 

  • Fischer P (2000) Time dependent flow in equimolar micellar solutions: transient behaviour of the shear stress and first normal stress difference in sheer induced structures coupled with flow instabilities. Rheol Acta 39:234–240

    Article  CAS  Google Scholar 

  • Fischer E, Callaghan PT (2000) Is a birefringence band a shear band? Europhys Lett 50:803–809

    Article  CAS  Google Scholar 

  • Fischer E, Callaghan PT (2001) Shear banding and the isotropic to nematic transition in wormlike micelles. Phys Rev E 6401:1501

    Google Scholar 

  • Fuller GG (1995) Optical rheometry of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Galvosas P, Callaghan PT (2006) Fast magnetic resonance imaging and velocimetry for liquids under high flow rates. J Magn Reson 181:119–125

    Article  CAS  Google Scholar 

  • Goldman M (1991) Quantum description of high-resolution NMR in liquids. Oxford University Press, New York

    Google Scholar 

  • Grabowski DA, Schmidt C (1994) Simultaneous measurement of shear viscosity and director orientation of a side-chain liquid-crystalline polymer by rheo-NMR. Macromolecules 27:2632–2643

    Article  CAS  Google Scholar 

  • Hanlon AD, Gibbs SJ, Hall LD, Laycock DE, Frith WJ, Ablett S (1998) Magn Reson Imaging.16:953–961

    Article  CAS  Google Scholar 

  • Holmes WM, López-González MR, Callaghan PT (2003a) Fluctuations in shear banded flow seen by NMR velocimetry. Eur Phys Lett 64:274–280

    Article  CAS  Google Scholar 

  • Holmes WM, López-González MR, Callaghan PT (2003b) Shear-induced constraints to amphiphile chain dynamics in wormlike micelles. Eur Phys Lett 66:132–138

    Article  Google Scholar 

  • Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004) Shear banding in ultra soft colloidal glasses. J Rheol 48:1085–1102

    Article  CAS  Google Scholar 

  • Janeschitz-Kriegl J (1983) Polymer melt rheology and flow birefringence. Springer, New York

    Google Scholar 

  • Kalus J, Neubauer G, Schemlzer U (1990) A new shear apparatus for small-angle neutron-scattering (SANS) measurements. Rev Sci Instr 61:3384

    Article  CAS  Google Scholar 

  • Kilfoil ML, Callaghan PT (2000) NMR measurement of the alignment tensor for a polymer melt under strong shearing flow. Macromolecules 33:6828–6833

    Article  CAS  Google Scholar 

  • López-González MR, Photinos P, Holmes WM, Callaghan PT (2004) Fluctuations and order for wormlike micelles under shear. Phys Rev Lett 93:268302–268305

    Article  Google Scholar 

  • López-González MR, Holmes WM, Callaghan PT (2006) Rheo-NMR phenomena of wormlike micelles. Soft Matter 2:855–869

    Article  Google Scholar 

  • Lutti A, Callaghan PT (2006) Measurement of diffusion in the presence of shear flow. J Magn Reson 180:83–92

    CAS  Google Scholar 

  • Lutti A, Callaghan PT (2007) Effect of shear on an onion texture. Eur Phys J E 24:129–137

    Google Scholar 

  • Mair RW, Callaghan PT (1996) (719–724) Observation of shear banding in wormlike micelles by NMR velocity imaging. Europhys Letters 36:719–724

    Article  CAS  Google Scholar 

  • Makhloufi R, Decruppe JP, Ait-Ali A, Cressely R (1995) Rheo-optical Study of worm-like micelles undergoing a shear banding flow. Europhys Lett 32:253–258

    Article  CAS  Google Scholar 

  • Manneville S, Becu L, Colin A (2004) High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur Phys J Appl Phys 28:361–373

    Article  Google Scholar 

  • Nakatani A, Waldo DA, Han CC (1992) A rheometer with 2-dimensional area detection for light-scattering-studies of polymer melts and solutions. Rev Sci Instr 63:3590

    Article  CAS  Google Scholar 

  • Olmsted PD (1999) Dynamics and flow-induced phase separation in polymeric fluids. Curr Opin Colloid Interface Sci 4:95–100

    Article  CAS  Google Scholar 

  • Plano RJ, Safinya CR, Sirota EB, Wenzel LJ (1993) X-ray couette shear cell for nonequilibrium structural studies of complex fluids under flow. Rev Sci Instr 64:1309

    Article  CAS  Google Scholar 

  • Radulescu O, Olmsted PD, Lu CYD (1999) Shear banding in reaction-diffusion models. Rheol Acta 38:606–613

    Article  CAS  Google Scholar 

  • Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions. J Rheol 46:709–732

    Article  CAS  Google Scholar 

  • Rehage H, Hoffman H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719

    Article  CAS  Google Scholar 

  • Rehage H, Hoffman H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Mol Phys 74:933–973

    Article  CAS  Google Scholar 

  • Salmon JB, Manneville S, Colin A (2003a) Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles. Phys Rev E 68:051503

    Article  Google Scholar 

  • Salmon JB, Manneville S, Colin A (2003b) Shear banding in a lyotropic lamellar phase. II. Temporal fluctuations. Phys Rev E 68:051504

    Article  Google Scholar 

  • Schmidt-Rohr K, Spiess H-W (1994) Multi-dimensional solids state NMR and polymers. Academic Press, London

    Google Scholar 

  • Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin

    Google Scholar 

  • Spenley NA, Cates ME, McLeish TCB (1993) Nonlinear rheology of wormlike micelles. Phys Rev Lett 71:939–942

    Article  CAS  Google Scholar 

  • Spenley NA, Yuan XF, Cates ME (1996) Nonmonotonic constitutive laws and the formation of shear-banded flows. J Phys II France 6:551–571

    Article  CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependant magnetic field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  • Stepisnik J (1981) Analysis of NMR self-diffusion by a density matrix calculation. Physica B and C 104:350–364

    Article  CAS  Google Scholar 

  • Wassenius H, Callaghan PT (2005) NMR velocimetry and the steady-shear rheology of a concentrated hard-sphere colloidal system. Eur Phys J 18:69–84

    CAS  Google Scholar 

  • Wilson HJ, Fielding SM (2006) Linear instability of planar shear banded flow of both diffusive and non-diffusive Johnson-Segalman fluids. J Non-newton Fluid Mech 138:181–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Callaghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callaghan, P.T. Rheo NMR and shear banding. Rheol Acta 47, 243–255 (2008). https://doi.org/10.1007/s00397-007-0251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0251-2

Keywords

Navigation