Skip to main content
Log in

Enhancement of strain-hardening by thermo-oxidative degradation of low-density polyethylene

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Low-density polyethylene was thermally and thermo-oxidatively degraded at 170°C and subsequently characterized by linear-viscoelastic measurements and in uniaxial extension. The elongational viscosities measured were analyzed in the framework of the Molecular Stress Function (MSF) model. For the thermally degraded samples, degradation times between 2 and 6 h were applied. Formation of long-chain branching (LCB) evidenced by enhanced strain hardening was found to occur only during the first 2 h of thermal degradation. At longer exposure times, no difference in the level of strain hardening was observed. This was quantified by use of the MSF model, which in elongation has two model parameters: \(f_{\max }^2\) determining the maximum relative stretch of the chain segments, and β representing the ratio of the molar mass of the (branched) polymer chain to the molar mass of the effective backbone alone. The non-linear parameter \(f_{\max }^2\) increased from \(f_{\max }^2 =14\) for the non-degraded sample to \(f_{\max }^2 =22\) for the samples thermally degraded for 2 up to 6 h. For the thermo-oxidatively degraded samples, i.e. those degraded in the presence of air, degradation times between 30 and 90 min were applied. Surprisingly, under these degradation conditions, the level of strain hardening increases drastically up to \(f_{\max }^2 =55\) with increasing exposure times from 30 up to 75 min due to LCB formation and then decreases for an exposure time of 90 min due to chain scission dominating LCB formation. The non-linear parameter β of the MSF model was found to be β = 2 for all samples, indicating that the general type of the random branching structure remains the same under all degradation conditions. Consequently, only the parameter \(f_{\max }^2\) of the MSF model and the linear-viscoelastic spectra were required to describe quantitatively the experimental observations. The strain hardening index, which is sometimes used to quantify strain hardening, was shown to follow accurately the trend of the MSF model parameter \(f_{\max }^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aho J, Rolón-Garrido VH, Syrjälä S, Wagner MH (2010a) Extensional viscosity in uniaxial extension and contraction flow- Comparison of experimental methods and application of the molecular stress function model. J Non-Newton Fluid Mech 165:212–218

    Article  CAS  Google Scholar 

  • Aho J, Rolón-Garrido VH, Syrjälä S, Wagner MH (2010b) Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheol Acta 49:359–370

    Article  CAS  Google Scholar 

  • Ali ZI, Youssef HA, Said HM, Saleh HH (2005) Thermal stability of LDPE, iPP and their blends. Thermochim Acta 438:70–75

    Article  CAS  Google Scholar 

  • Arnett RL, Stacy CJ (1966) Kinetics of the thermal degradation of linear polyethylene. Polym Eng Sci 6(4):295–298

    Article  CAS  Google Scholar 

  • Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472

    Article  CAS  Google Scholar 

  • Bernnat A (2001) Polymer melt rheology and rheotens test PhD thesis, Institut für Kunststofftechnologie. University of Stuttgart, Germany

  • Budrugeac P, Segal E (1998) Changes in the mechanical properties and thermal behaviour of LDPE in response to accelerated thermal aging. J Thermal Anal 53:801–808

    Article  CAS  Google Scholar 

  • Cho YS, Shim MJ, Kim SW (1998) Thermal degradation kinetics of PE by the Kissinger equation. Mater Chem Phys 52:94–97

    Article  CAS  Google Scholar 

  • Delgadillo-Velazquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological properties of LLDPE/LDPE blends. Rheol Acta 47:19–31

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 2—molecular motion under flow. J Chem Soc Faraday Trans II 74:1802–1817

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4—rheological properties. J Chem Soc Faraday Trans II 75:38–54

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, USA

    Google Scholar 

  • Gabriel C, Kaschta J, Münstedt H (1998) Influence of molecular structure on rheological properties of polyethylenes. I. Creep recovery measurements in shear. Rheol Acta 37:7–20

    Article  CAS  Google Scholar 

  • Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944

    Article  CAS  Google Scholar 

  • Garofalo E, Russo GM, Scarfato P, Incarnato L (2009) Nanostructural modifications of polyamide/MMT hybrids under isothermal and non-isohermal elongational flow. J Pol Sci, Part B Polym Phys 47:981–993

    Article  CAS  Google Scholar 

  • Gijsman P (2008) Review on the thermo-oxidative degradation of polymers during processing and in service. e-Polymers 30:65

    Google Scholar 

  • Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polypropylene. J Rheol 48(4):895–914

    Article  CAS  Google Scholar 

  • Gubler MG, Kovacs AJ (1959) La Structure du polyéthylène consideré comme un mélange de n-paraffines). J Pol Sci 34:551–568

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG (2000) Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polym Eng Sci 40(11):2279–2287

    Article  CAS  Google Scholar 

  • Hinsken H, Moss S, Pauquet JR, Zweifel H (1991) Degradation of polyolefins during melt processing. Polym Degrad Stab 34(1–3):279–293

    Article  CAS  Google Scholar 

  • Holmström A, Sörvik EM (1974) Thermal degradation of polyethylene in a nitrogen atmosphere of low oxygen content. II. Structural changes occurring in low-density polyethylene at an oxygen content less than 0.0005%. J Appl Polym Sci 18:761–778

    Article  Google Scholar 

  • Holmström A, Sörvik EM (1978) Thermooxidative degradation of polyethylene. I and II. Structural changes occuring in low-density polyethylene, high-density polyethylene, and tetrateracontane heated in air. J Polym Sci Polym Chem Ed 16:2555–2586

    Article  Google Scholar 

  • Iring M, Tudos F, Fodor Z, Kelen T (1980) The thermo-oxidative degradation of polyolefines-part 10. Correlation between the formation of carboxyl groups and scission in the oxidation of polyethylene in the melt phase. Polym Degrad Stab 2:143–153

    Article  CAS  Google Scholar 

  • Iring M, Kelen T, Fodor Z (1982) Thermo-oxidative degradation of polyolefines 11. Comparison of polyethylene oxidation in solution and in melt. Polym Bull 7:489–495

    Article  CAS  Google Scholar 

  • Iring M, Fodor Z, Barabás K, Kelen T, Tudos F (1986) The effect of reaction conditions on LDPE oxidation. Polym Bull 16:159–165

    Article  CAS  Google Scholar 

  • Johnston RT, Morrison EJ (1996) Thermal scission and cross-linking during polyethylene melt processing. In: Polymer durability: degradation, stabilisation and lifetime prediction. Adv Chem Series 249:651–682

    CAS  Google Scholar 

  • Kheirandish S, Stadlbauer M (2009) Molecular stress function theory and analysis of branching structure in industrial polyolefins. J Therm Anal Calorim 98(3):629–637

    Article  CAS  Google Scholar 

  • Konar J, Ghosh R (1990) Characterization of oxidized LDPE by solid state fluorescence spectra. J Appl Polym Sci 40:719–729

    Article  CAS  Google Scholar 

  • Kumar GS, Kumar VR, Madras G (2002) Continuous distribution kinetics for the thermal degradation of LDPE in solution. J Appl Polym Sci 84:681–690

    Article  CAS  Google Scholar 

  • Lagendijk RP, Hogt AH, Buijtenhuijs A, Gotsis AD (2001) Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 42:10035–10043

    Article  CAS  Google Scholar 

  • Laun HM (1987) Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules. Prog Coll and Polym Sci 75:111–139

    Article  Google Scholar 

  • Mariani P, Carianni G, Menconi F, La Mantia FP (2002) Correlation between processability and properties of a high density polyethylene by a rheological approach. Macrom Chem Phys 203:1602–1605

    Article  CAS  Google Scholar 

  • Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymer liquids. Macromolecules 13:380–387

    Article  CAS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Muliawan EB, Hatzikiriakos SG (2008) The effect of refrigerated storage on the rheological properties of three commercial mozzarella cheeses. Int J Food Eng 4(4):9

    Google Scholar 

  • Münstedt H (1975) Viscoelasticity of polystyrene melts in tensile creep experiments. Rheol Acta 14:1077–1088

    Article  Google Scholar 

  • Münstedt H, Laun HM (1979) Elongational behaviour of low density polyethylene melt II. Transient behaviour in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol Acta 18:492–504

    Article  Google Scholar 

  • Münstedt H, Kurzbeck S, Stange J (2006) Importance of elongational properties of polymer melts for film blowing and thermoforming. Polym Eng Sci 46(9):1190–1195

    Article  Google Scholar 

  • Ng TSK, McKinley GH, Padmanabhan M (2006) Linear to non-linear rheology of wheat flour dough. Appl Rheol 16:265–274

    Google Scholar 

  • Oakes WG, Richards RB (1949) The thermal degradation of ethylene polymers. J Chem Soc 2929–2935

  • Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784

    Article  CAS  Google Scholar 

  • Pivokonsky R, Zatloukal M, Filip P (2006) On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J Non-Newton Fluid Mech 135:58–67

    Article  CAS  Google Scholar 

  • Pivokonsky R, Zatloukal M, Filip P, Tzoganakis C (2009) Rheological characterization and modeling of linear and branched metallocene polypropylenes prepared by reactive processing. J Non-Newton Fluid Mech 135:1–6

    Article  Google Scholar 

  • Quackenbos HM (1966) Thermal and oxidative effects in polyethylene above 200°C. Polym Eng Sci 6(2):117–123

    Article  CAS  Google Scholar 

  • Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene results. J Rheol 49(2):369–381

    Article  CAS  Google Scholar 

  • Rolón-Garrido VH, Wagner MH (2007) The MSF model: relation of non-linear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46(5):583–593

    Article  Google Scholar 

  • Rolón-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340

    Article  Google Scholar 

  • Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697

    Article  Google Scholar 

  • Salvalaggio M, Bagatin R, Fornaroli M, Fanutti S, Palmery S, Battistel E (2006) Multi-component analysis of low-density polyethylene oxidative degradation. Polym Degrad Stab 91:2775–2785

    Article  CAS  Google Scholar 

  • Sambaer W, Zatloukal M, Kimmer D (2010) The use of novel digital image analysis technique and rheological tools to characterize nanofiber nonwovens. Polym Test 29(1):82–94

    Article  CAS  Google Scholar 

  • Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behaviour. Rheol Acta 43:657–669

    Article  CAS  Google Scholar 

  • Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49:585–606

    Article  CAS  Google Scholar 

  • Shangguan YG, Zhang CH, Xie YL, Chen RF, Jin L, Zheng Q (2010) Study on degradation and crosslinking of impact polypropylene copolymer by dynamic rheological measurement. Polymer 51:500–506

    Article  CAS  Google Scholar 

  • Simha R, Wall LA, Blatz PJ (1950) Depolimerization as a chain reaction. J Polym Sci 5(5):615–632

    Article  CAS  Google Scholar 

  • Spitael P, Macosko CW (2004) Strain hardening in polypropylenes and its role in extrusion foaming. Polym Eng Sci 44(11):2090–2100

    Article  CAS  Google Scholar 

  • Stadler FJ (2007) Molecular structure and rheological properties of linear and long-chain branched ethane-/α-olefin copolymers. Dissertation, University Erlangen-Nürnberg, Germany

  • Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behaviour of varios long-chain branched polyethylenes. Macromolecules 41:1328–1333

    Article  CAS  Google Scholar 

  • Stamboulides C, Hatzikiriakos SG (2006) Rheology and Processing of molten poly(methyl methacrylate) resins. Intern Polym Proc 21:155–163

    CAS  Google Scholar 

  • Stange J, Münstedt H (2006) Effect of long-chain branching on the foaming of polypropylene with azodicarbonamide. J Cell Plast 42(6):445–467

    Article  CAS  Google Scholar 

  • Sugimoto M, Koizumi T, Taniguchi T, Koyama K, Saito K, Nonokawa D, Morita T (2009) Melt rheology of hyperbranched-polystyterene synthesized with multisite macromonomer. J Polym Sci B: Polym Phys 47:2226–2237

    Article  CAS  Google Scholar 

  • Svrcinova P, Kharlamov A, Filip P (2007) On the measurement of elongational viscosity of polyethylene materials. Acta Technica 54:49–57

    Google Scholar 

  • Tabatabaei SH, Carreau PJ, Ajji A (2010) Rheological properties of blends of linear and long-chain branched polypropylenes. Polym Eng Sci 50:191–199

    Article  CAS  Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen-plot II- classification of long chain branched polymers by their topology. Rheol Acta 41:103–113

    Article  CAS  Google Scholar 

  • van Ruymbeke E, Stéphene V, Daoust D, Godard P, Keunings R, Bailly C (2005) A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic response. J Rheol 49(6):1503–1520

    Article  Google Scholar 

  • Vega JF, Santamaria A, Muñoz-Escalona A, Lafuente P (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31:3639–3647

    Article  CAS  Google Scholar 

  • Wagner MH (1999) Constitutive equations for polymer melts and rubbers: lessons from the 20th century. Korea-Australia Rheol J 11:293–304

    Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2008) Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. J Rheol 52(5):1049–1068

    Article  CAS  Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459–471

    Article  CAS  Google Scholar 

  • Wagner MH, Ehrecke P, Hachmann P, Meissner J (1998) A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt. J Rheol 42(3):621–638

    Article  CAS  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412

    Article  CAS  Google Scholar 

  • Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47(3):779–793

    Article  CAS  Google Scholar 

  • Wagner MH, Hepperle J, Münstedt H (2004) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory. J Rheol 48(3):489–503

    Article  CAS  Google Scholar 

  • Wall LA (1948) Mass spectrometric investigation of the thermal decomposition of polymers. J Res Nat Bur Stand 41:315–322

    CAS  Google Scholar 

  • Winter HH, Mours M (2007) Iris developments. http://rheology.tripod.com/

  • Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290

    Article  CAS  Google Scholar 

  • Yamaguchi M, Suzuki K (2002) Enhanced strain hardening in elongational viscosity for HDPE/crosslinked HDPE blend. II. Processability thermoforming. J Appl Polym Sci 86:79–83

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support by the German Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Rolón-Garrido.

Additional information

Dedicated to Professor Helmut Münstedt of Friedrich-Alexander Universität Erlangen-Nürnberg on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolón-Garrido, V.H., Luo, J. & Wagner, M.H. Enhancement of strain-hardening by thermo-oxidative degradation of low-density polyethylene. Rheol Acta 50, 519–535 (2011). https://doi.org/10.1007/s00397-011-0559-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0559-9

Keywords

Navigation