Skip to main content
Log in

The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The elongational viscosity data of model PS combs (Hepperle J, Einfluss der Molekularen Struktur auf Rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen. Doctoral Thesis, University Erlangen-Nürnberg, 2003) are reconsidered by including the interchain pressure term of Marrucci and Ianniruberto [Macromolecules 37:3934–3942, 2004] in the Molecular Stress Function model [Wagner et al., J Rheol 47(3):779–793, 2003, Wagner et al., J Rheol 49:1317–1327, 2005d]. Two nonlinear model parameters are needed to describe elongational flow, β and \( f^{2}_{{{\text{MAX}}}} \). The parameterβ determines the slope of the elongational viscosity after the inception of strain hardening. It is directly related to the molecular structure of the polymer and represents the ratio of the molar mass of the (branched) polymer to the molar mass of the backbone alone. β follows from the hypothesis of Wagner et al. [J Rheol 47(3):779–793, 2003] that side chains are compressed onto the backbone. We consider also the case that side chains are oriented by deformation, but not stretched, and found little difference in the model predictions. The parameter \( f^{2}_{{{\text{MAX}}}} \) represents the maximum strain energy stored in the polymeric system and determines the steady-state value of the viscosity in extensional flows. The relation of this energy parameter to the molecular structure is discussed. Good correlations between the energy parameter and different coil contraction ratios, as determined either experimentally or calculated theoretically by considering the topology of the macromolecule, are found. The smaller the relative size of the polymer coil, the larger is the energy parameter and the more strain energy can be stored in the polymeric system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Berry GC (1968) Translational frictional constant of comb-branched polymers. J Polym Sci A-2 6:1551–1554

    Article  CAS  Google Scholar 

  • Berry GC (1971) Thermodynamic and conformational properties of polystyrene. III. Dilute solution studies on branched polymers. J Polym Sci A-2 9:687–715

    Article  CAS  Google Scholar 

  • Berry GC (1988) Remarks on a relation among the intrinsic viscosity, the radius of gyration, and the translational friction coefficient. J Polym Sci B Polym Phys 26:1137–1142

    Article  CAS  Google Scholar 

  • Berry GC, Orofino TA (1964) Branched polymers. III. Dimensions of chains with small excluded volume. J Chem Phys 40(6):1614–1621

    Article  CAS  Google Scholar 

  • Casassa EF, Berry GC (1966) Angular distribution of intensity of rayleigh scattering from comblike branched molecules. J Polym Sci A-2 4:881–887

    Article  CAS  Google Scholar 

  • Candau F, Rempp P, Benoit H (1972) A new theoretical approach to the problem of solution behavior of branched polymers. Macromolecules 5(5):627–635

    Article  CAS  Google Scholar 

  • Daniels DR, McLeish TCB, Crosby BJ, Young RN, Fernyhough CM (2001) Molecular rheology of comb polymer melts. 1. Linear viscoelastic response. Macromolecules 34:7025–7033

    Article  CAS  Google Scholar 

  • Dekmezian AH, Weng W, Garcia-Franco CA, Markel EJ (2004) Melt strength of blends of linear low density polyethylene and comb polymers. Polymer 45:5635–5640

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 2.-Molecular motion under flow. J Chem Soc Faraday Trans 2(74):1802–1817

    Google Scholar 

  • Flory PJ, Fox TG (1951) Treatment of intrinsic viscosity. J Am Chem Soc 73:1904–1908

    Article  CAS  Google Scholar 

  • Freire JJ (1999) Conformational properties of branched polymers: theory and simulations. Adv Polym Sci 143:35–112

    Article  CAS  Google Scholar 

  • Fujimoto T, Narukawa H, Nagasawa M (1970) Viscoelastic properties of comb-shaped polystyrenes. Macromolecules 3(1):57–64

    Article  CAS  Google Scholar 

  • Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polypropylene. J Rheol 48(4):895–914

    Article  CAS  Google Scholar 

  • Hepperle J (2003) Einfluss der Molekularen Struktur auf Rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen. Doctoral Thesis, University Erlangen-Nürnberg

  • Hepperle J, Münstedt H (2006) Rheological properties of branched polystyrenes: nonlinear shear and extensional behavior. Rheol Acta 45(5):717–727

    Article  CAS  Google Scholar 

  • Hepperle J, Münstedt H, Haug PK, Eisenbach CD (2005) Rheological properties of branched polystyrenes: linear viscoelastic behavior. Rheol Acta 45(2):151–163

    Article  CAS  Google Scholar 

  • Kapnistos M, Vlassopoulos D, Roovers J, Leal LG (2005) Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38(18):7852–7862

    Article  CAS  Google Scholar 

  • Kato T, Itsubo A, Yamamoto Y, Fujimoto T, Nagasawa M (1975) Gel permeation chromatography of comb-shaped branched polymers. Polym J 7(1):123–129

    Article  CAS  Google Scholar 

  • Kim DM, Busch M, Hoefsloot HCJ, Iedema PD (2004) Molecular weight distribution modeling in low-density polyethylene polymerization; impact of scission mechanisms in the case of CSTR. Chem Eng Sci 59:699–718

    Article  CAS  Google Scholar 

  • Kuhn R, Kromer H, Rossmanith G (1974) Struktur und Eigenschaften vershieden hergestellter Hochdruckpolyäthylene (Structure and properties of various high-pressure polyethylenes). Angew Makromol Chem 40:361–389

    Article  Google Scholar 

  • Lipson JEG (1991) A Monte Carlo simulation study on long-chain combs. Macromolecules 24:1327–1333

    Article  CAS  Google Scholar 

  • Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942

    Article  CAS  Google Scholar 

  • McCrackin FL, Mazur J (1981) Configuration properties of comb-branched polymers. Macromolecules 14:1214–1220

    Article  CAS  Google Scholar 

  • Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24(6):847–867

    Article  Google Scholar 

  • Nakamura Y, Wan Y, Mays JW, Iatrou H, Hadjichristidis N (2000) Radius of gyration of polystyrene combs and centipedes in solution. Macromolecules 33:8323–8328

    Article  CAS  Google Scholar 

  • Noda I, Horikawa T, Kato T, Fujimoto T, Nagasawa M (1970) Solution properties of comb-shaped polystyrenes. Macromolecules 3(6):795–799

    Article  Google Scholar 

  • Osaki K, Mitsuda Y, Schrag JL, Ferry JD (1974) Numerical calculations of the viscoelastic properties of dilute solutions of comb-shaped branched polymers. Trans Soc Rheol 18(3):395–410

    Article  Google Scholar 

  • Radke W, Müller AHE (2005) Synthesis and characterization of comb-shaped polymers by SEC with on-line scattering and viscometry detection. Macromolecules 38:3949–3960

    Article  CAS  Google Scholar 

  • Rolón-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340

    Article  CAS  Google Scholar 

  • Roovers J (1979) Synthesis and dilute solution characterizatioon of comb polystyrenes. Polymer 20:843–849

    Article  CAS  Google Scholar 

  • Roovers J, Graessley WW (1981) Melt rheology of some model comb polystyrenes. Macromolecules 14:766–773

    Article  CAS  Google Scholar 

  • Roovers J, Toporowski PM (1987) Relaxation by constraint release in combs and star-combs. Macromolecules 20:2300–2306

    Article  CAS  Google Scholar 

  • Rouault Y (1998) From comb polymers to polysoaps: a Monte Carlo attempt. Macromol Theory Simul 7:359–365

    Article  CAS  Google Scholar 

  • Rouault Y, Borisov OV (1996) Comb-branched polymers: Monte Carlo simulation and scaling. Macromolecules 29:2605–2611

    Article  CAS  Google Scholar 

  • Sheng YJ, Cheng KL, Ho CC (2004) Effect of solvent quality on the conformations of a model comb polymer. J Chem Phys 121(4):1962–1968

    Article  CAS  Google Scholar 

  • Shiokawa K, Itoh K, Nemoto N (1999) Simulations of the shape of a regularly branched polymer as a model of a polymacromonomer. J Chem Phys 111(17):8165–8173

    Article  CAS  Google Scholar 

  • Stanescu P, Majesté JC, Carrot C (2005) Modeling of the linear viscoelastic behavior of low-density polyethylene. J Polym Sci B Polym Phys 43:1973–1985

    Article  CAS  Google Scholar 

  • Terao K, Farmer BS, Nakamura Y, Iatrou H, Hong K, Mays JW (2005) Radius of gyration of polystyrene combs and centipedes in a θ solvent. Macromolecules 38:1447–1450

    Article  CAS  Google Scholar 

  • Wagner MH (1994) The origin of the C2 term in rubber elasticity. J Rheol 38:655–679

    Article  CAS  Google Scholar 

  • Wagner MH (1999) Constitutive equations for polymer melts and rubbers: lessons from the 20th century. Korea-Australia Rheol J 11:293–304

    Google Scholar 

  • Wagner MH, Schaeffer J (1992) Nonlinear measures for general biaxial extension of polymer melts. J Rheol 36:1–26

    Article  CAS  Google Scholar 

  • Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of nonlinear stress–strain relations. J Rheol 37(4):643–661

    Article  CAS  Google Scholar 

  • Wagner MH, Bastian H, Ehrecke P, Kraft M, Hachmann P, Meissner J (1998a) Nonlinear viscoelastic characterization of a linear polyethylene (HDPE) melt in rotational and irrotaniolan flows. J Non-Newton Fluid Mech 79:283–296

    Article  CAS  Google Scholar 

  • Wagner MH, Bastian H, Ehrecke P, Hachmann P, Meissner J (1998b) A constitutive analysis of uniaxial, equibiaxial, and planar extension of a linear and branched polyethylene melts. In: Emri I et al (eds) Progress and trends in rheology. Steinkopff, Darmstadt, pp 4–7

    Google Scholar 

  • Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Münstedt H, Langouche F (2000) The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109

    Article  CAS  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45(6):1387–1412

    Article  CAS  Google Scholar 

  • Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47(3):779–793

    Article  CAS  Google Scholar 

  • Wagner MH, Hepperle J, Münstedt H (2004) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory. J Rheol 48(3):489–503

    Article  CAS  Google Scholar 

  • Wagner MH, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T (2005a) Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheol Acta 44:235–243

    Article  CAS  Google Scholar 

  • Wagner MH, Kheirandish S, Yamaguchi M (2005b) Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol Acta 44:198–218

    Article  CAS  Google Scholar 

  • Wagner MH, Rolón-Garrido VH, Chai ChK (2005c) Exponential shear flow of branched polyethylenes in rotational parallel-plate geometry. Rheol Acta 45:164–173

    Article  CAS  Google Scholar 

  • Wagner MH, Kheirandish S, Hassager O (2005d) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327

    Article  CAS  Google Scholar 

  • Wapperom P, Leygue A, Keunings R (2005) Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model. J Non-Newton Fluid Mech 130:63–76

    Article  CAS  Google Scholar 

  • Winter HH, Mours M (2003) IRIS Developments. http://rheology.tripod.com/

  • Yurasova TA, McLeish TCB (1994) Semenov AN, Stress relaxation in entangled comb polymer melts. Macromolecules 27:7205–7211

    Article  CAS  Google Scholar 

  • Zimm BH, Stockmayer WH (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17(12):1301–1312

    Article  CAS  Google Scholar 

Download references

Acknowledgment

V.H.R.-G. wishes to thank the CONACyT-DAAD for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred H. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolón-Garrido, V.H., Wagner, M.H. The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46, 583–593 (2007). https://doi.org/10.1007/s00397-006-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-006-0136-9

Keywords

Navigation