Skip to main content

Advertisement

Log in

Time-intensity transformation and internal stress in UV-curable hyperbranched acrylates

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The photocuring of three different highly functional acrylates—Di-pentaerythritol penta/hexaacrylate (DPHA) and two hyperbranched molecules (HBP), one with a stiff polyester and one with a more flexible polyether structure—was investigated by means of photorheology, photo differential scanning calorimetry, and beam bending. Special attention was paid to the influence of the composition of DPHA/HBP reactive blends and UV intensity on gelation and vitrification and the resulting dynamics of the internal stress. It was found that adding HBPs to DPHA did not influence gelation significantly, but shifted the onset of vitrification to higher conversions and thus caused lower internal stresses in the material. Increasing UV intensity increased both the conversion at vitrification, thus retarding the build-up of internal stresses, and the ultimate conversion, thus increasing the final stress level. The obtained conversion, gelation, and vitrification data were assembled into time-intensity transformation diagrams, thus providing a useful tool for optimizing photocuring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

HBP:

hyperbranched polymer

DSC:

differential scanning calorimetry

References

  • Andrzejewska E, Bogacki MB, Andrzejewski M (2001) The autocatalytic model of photopolymerization of dimethacrylates. Polimery 46(7–8):549–551

    CAS  Google Scholar 

  • Botella A, Dupuy J, Roche A-A, Sautereau H, Verney V (2004) Photo-rheometry/NIR spectrometry: an in situ technique for monitoring conversion and viscoelastic properties during photopolymerization. Macromol Rapid Commun 25:1155–1158

    Article  CAS  Google Scholar 

  • Chandra R, Soni RK (1993) Studies on kinetics of bulk polymerization of divinyl ester by radical-initiated thermal and photopolymerization. Polym Int 31:239–245

    Article  CAS  Google Scholar 

  • Chandra R, Soni RK, Murthy SS (1993) Studies on the kinetics of radical initiated photocopolymerisation of Di(vinyl 2-hydroxy propanoate)ether of bisphenol-A and monomers. Polym Int 31:305–314

    Article  CAS  Google Scholar 

  • Chiou B-S, English RJ, Khan SA (1996) Rheology and photo-cross-linking of thiol-ene polymers. Macromolecules 29:5368–5374

    Article  CAS  Google Scholar 

  • Chiou B-S, English RJ, Khan SA (1997) UV cross-linking of thiol-ene polymers: a rheological study. In: Scranton AB, Bowman CN, Pheiffer RW (eds) Photopolymerization: fundamentals and application. American Chemical Society, Washington, pp 150–166

    Google Scholar 

  • Croll SG (1979) The origin of residual internal stress in solvent-cast thermoplastic coatings. J Appl Polym Sci 23:847–858

    Article  CAS  Google Scholar 

  • Davidson S (1999) Exploring the science, technology and applications of U.V. and E.B. curing. SITA Technology, London, UK

    Google Scholar 

  • Decker C, Moussa K (1988) A new method for monitoring ultra-fast photopolymerizations by real-time infra-red (RTIR) spectroscopy. Makromolekul Chem 189:2381–2394

    Article  CAS  Google Scholar 

  • Decker C, Elzaouk B, Decker D (1996) Kinetic study of ultrafast photopolymerization reactions. J Macromol Sci Pure Appl Chem A33(2):173–190

    CAS  Google Scholar 

  • Enns JB, Gillham JK (1983) Time–temperature-transformation (TTT) cure diagram: modeling the cure behaviour of thermosets. J Appl Polym Sci 28:2567–2591

    Article  CAS  Google Scholar 

  • Gillham JK (1983) The time–temperature-transformation (TTT) state diagram and cure. In: Seferis JL, Nicolais L (eds) The role of the polymeric matrix in the processing and structural properties of composite materials. Plenum Press, New York, pp 127–145

    Google Scholar 

  • Jakubiak J, Sionkowska A, Lindén L-Å, Rabek JF (2001) Isothermal photo differential scanning calorimetry-crosslinking polymerization of multifunctional monomers in presence of visible light photoinitiators. J Therm Anal Calorim 65:435–443

    Article  CAS  Google Scholar 

  • Jin Y-H, Schmidt LE, Leterrier Y, Cho Y-H, Månson J-AE (2005) Fabrication process of low-stress UV-curable hyperbranched polymers for microfluidic applications. NanoTech 2005, the 9th annual european conference on micro & nanoscale technologies for the biosciences, Montreux, Switzerland, Nov. 15-17

  • Khan SA, Plitz IM, Frantz RA (1992) In situ technique for monitoring the gelation of UV curable polymers. Rheol Acta 31:151–160

    Article  CAS  Google Scholar 

  • Klee JE, Schneider C, Hölter D, Burgath A, Frey H, Mülhaupt R (2001) Hyperbranched polyesters and their application in dental composites: monomers for low shrinking composites. Polym Adv Technol 12(6):346–354

    Article  CAS  Google Scholar 

  • Kloosterboer JG (1988) Network formation by chain crosslinking photopolymerization and its applications in electronics. Adv Polym Sci 84:1–61

    Article  CAS  Google Scholar 

  • Kou H-G, Asif A, Shi W-F (2003) Hyperbranched acrylated aromatic polyester used as a modifier in UV-curable epoxy acrylate resins. Chin J Chem 21:91–95

    CAS  Google Scholar 

  • Lange J, Toll S, Månson J-AE, Hult A (1995) Residual stress build-up in thermoset films cured above their ultimate glass transition temperature. Polymer 36(16):3135–3141

    Article  CAS  Google Scholar 

  • Lange J, Toll S, Månson J-AE, Hult A (1997) Residual stress build-up in thermoset films cured below their ultimate glass transition temperature. Polymer 38(4):809–815

    Article  CAS  Google Scholar 

  • Lange J, Ekelöf R, George GA (1999) Indications of micro-vitrification during chainwise cross-linking polymerisation. Polymer 40:3595–3598

    Article  CAS  Google Scholar 

  • Lange J, Altmann N, Kelly CT, Halley PJ (2000) Understanding vitrification during cure of epoxy resins using dynamic scanning calorimetry and rheological techniques. Polymer 41:5949–5955

    Article  CAS  Google Scholar 

  • Lee SS, Luciani A, Månson J-AE (2000) A rheological characterisation technique for fast UV-curable systems. Prog Org Coat 38:193–197

    Article  CAS  Google Scholar 

  • Lee KJ, Choi JY, Lim BS (2003) Time–temperature-intensity-transformation cure diagram for visible light curable dimethacrylate resins. Polym J 35(10):778–784

    Article  CAS  Google Scholar 

  • Magnusson H, Malmström E, Hult A (1999) Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromol Rapid Commun 20:453–457

    Article  CAS  Google Scholar 

  • Malmström E, Johansson M, Hult A (1995) Hyperbranched aliphatic polyesters. Macromolecules 28:1698–1703

    Article  Google Scholar 

  • Payne JA, Francis LF, McCormick AV (1997) The effects of processing variables on stress development in ultraviolet-cured coatings. J Appl Polym Sci 66:1267–1277

    Article  CAS  Google Scholar 

  • Rodlert M, Plummer CJG, Garamszegi L, Leterrier Y, Grünbauer HJM, Månson J-AE (2004) Hyperbranched polymer/montmorillonite clay nanocomposites. Polymer 45:949–960

    Article  CAS  Google Scholar 

  • Schmidt LE, Leterrier Y, Schmaeh D, Månson J-AE, James D (2005a) Structural and residual stress analysis of UV curable hyperbranched acrylates. RadTech Europe, Barcelona

    Google Scholar 

  • Schmidt LE, Leterrier Y, Vesin J-M, Wilhelm M, Månson J-AE (2005b) Photorheology of fast UV curing multifunctional acrylates. Macromol Mater Eng 290:1115–1124

    Article  CAS  Google Scholar 

  • Schmidt LE, Leterrier Y, Schmäh D, Månson J-AE, James D, Gustavsson E, Svensson LS (2007) Conversion analysis of acrylated hyperbranched polymers UV-cured below their ultimate glass transition temperature. J Appl Polym Sci (in press)

  • Steeman PAM, Dias AA, Wienke D, Zwartkruis T (2004) Polymerization and network formation of UV-curable systems monitored by hyphenated real-time dynamic mechanical analysis and near-infrared spectroscopy. Macromolecules 37:7001–7007

    Article  CAS  Google Scholar 

  • Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond A Math Phys Sci 82:172–175

    CAS  Google Scholar 

  • Wan Q, Schricker SR, Culbertson BM (2000) Methacryloyl derivitized hyperbranched polyester. 2. Photo-polymerization and properties for dental resin systems. J Macromol Sci Pure Appl Chem A37(11):1317–1331

    Article  CAS  Google Scholar 

  • Wen M, Scriven LE, McCormick AV (2002) Differential scanning calorimetry and cantilever deflection studies of polymerization kinetics and stress in ultraviolet curing of multifunctional (meth)acrylate coatings. Macromolecules 35:112–120

    Article  CAS  Google Scholar 

  • Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287:83–105

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382

    Article  CAS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165–233

    CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the Swiss National Science Foundation (SNF project # 2100.063675.00) is gratefully acknowledged. Prof. Manfred Wilhelm from the Max Planck Institute for Polymer Research and Dr. Jean-Marc Vesin from the EPFL are thanked for their fruitful collaboration on photorheology. Furthermore, the authors would like to thank David James from Perstorp Specialty Chemicals, Dr. Aly Franck from TA Instruments, and Dr. André Fuchs from Ciba Specialty Chemicals for providing samples and useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Anders E. Månson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, L.E., Schmäh, D., Leterrier, Y. et al. Time-intensity transformation and internal stress in UV-curable hyperbranched acrylates. Rheol Acta 46, 693–701 (2007). https://doi.org/10.1007/s00397-006-0163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-006-0163-6

Keywords

Navigation