Skip to main content

Advertisement

Log in

Novel aspects of ROS signalling in heart failure

  • Invited Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Heart failure and many of the conditions that predispose to heart failure are associated with oxidative stress. This is considered to be important in the pathophysiology of the condition but clinical trials of antioxidant approaches to prevent cardiovascular morbidity and mortality have been unsuccessful. Part of the reason for this may be the failure to appreciate the complexity of the effects of reactive oxygen species. At one extreme, excessive oxidative stress damages membranes, proteins and DNA but lower levels of reactive oxygen species may exert much more subtle and specific regulatory effects (termed redox signalling), even on physiological signalling pathways. In this article, we review our current understanding of the roles of such redox signalling pathways in the pathophysiology of heart failure, including effects on cardiomyocyte hypertrophy signalling, excitation–contraction coupling, arrhythmia, cell viability and energetics. Reactive oxygen species generated by NADPH oxidase proteins appear to be especially important in redox signalling. The delineation of specific redox-sensitive pathways and mechanisms that contribute to different components of the failing heart phenotype may facilitate the development of newer targeted therapies as opposed to the failed general antioxidant approaches of the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441. doi:10.2337/diabetes.52.2.434

    Article  PubMed  CAS  Google Scholar 

  2. Adam O, Frost G, Custodis F, Sussman MA, Schafers HJ, Bohm M, Laufs U (2007) Role of Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol 50:359–367. doi:10.1016/j.jacc.2007.03.041

    Article  PubMed  CAS  Google Scholar 

  3. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106:1253–1264. doi:10.1161/CIRCRESAHA.109.213116

    Article  PubMed  CAS  Google Scholar 

  4. Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993. doi:10.1016/j.cell.2008.04.041

    Article  PubMed  CAS  Google Scholar 

  5. Andersson DC, Fauconnier J, Yamada T, Lacampagne A, Zhang SJ, Katz A, Westerblad H (2011) Mitochondrial production of reactive oxygen species contributes to the beta-adrenergic stimulation of mouse cardiomycytes. J Physiol 589:1791–1801. doi:10.1113/jphysiol.2010.202838

    Article  PubMed  CAS  Google Scholar 

  6. Anilkumar N, Weber R, Zhang M, Brewer A, Shah AM (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28:1347–1354. doi:10.1161/ATVBAHA.108.164277

    Article  PubMed  CAS  Google Scholar 

  7. Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877. doi:10.1016/j.bbabio.2010.02.016

    Article  PubMed  CAS  Google Scholar 

  8. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296. doi:10.1161/hc0302.103712

    Article  PubMed  CAS  Google Scholar 

  9. Boardman N, Hafstad AD, Larsen TS, Severson DL, Aasum E (2009) Increased O2 cost of basal metabolism and excitation-contraction coupling in hearts from type 2 diabetic mice. Am J Physiol Heart Circ Physiol 296:H1373–H1379. doi:10.1152/ajpheart.01264.2008

    Article  PubMed  CAS  Google Scholar 

  10. Bodiga S, Zhong JC, Wang W, Basu R, Lo J, Liu GC, Guo D, Holland SM, Scholey JW, Penninger JM, Kassiri Z, Oudit GY (2011) Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit. Cardiovasc Res 91:151–161. doi:10.1093/cvr/cvr036

    Article  PubMed  CAS  Google Scholar 

  11. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223. doi:10.1161/CIRCULATIONAHA.106.679597

    Article  PubMed  Google Scholar 

  12. Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schroder E, Wait R, Begum S, Kentish JC, Eaton P (2006) Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281:21827–21836. doi:10.1074/jbc.M603952200

    Article  PubMed  CAS  Google Scholar 

  13. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111:1091–1106. doi:10.1161/CIRCRESAHA.111.255216

    Article  PubMed  CAS  Google Scholar 

  14. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805. doi:10.1161/CIRCRESAHA.111.255216

    Article  PubMed  CAS  Google Scholar 

  15. Canton M, Menazza S, Sheeran FL, de Polverino LP, Di LF, Pepe S (2011) Oxidation of myofibrillar proteins in human heart failure. J Am Coll Cardiol 57:300–309. doi:10.1016/j.jacc.2010.06.058

    Article  PubMed  CAS  Google Scholar 

  16. Canton M, Skyschally A, Menabo R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di LF, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 27:875–881. doi:10.1093/eurheartj/ehi751

    Article  PubMed  CAS  Google Scholar 

  17. Chen CJ, Fu YC, Yu W, Wang W (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochem Biophys Res Commun 430:798–803. doi:10.1016/j.bbrc.2012.11.066

    Article  PubMed  CAS  Google Scholar 

  18. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907. doi:10.1161/01.RES.0000187457.24338.3D

    Article  PubMed  CAS  Google Scholar 

  19. Cutler MJ, Plummer BN, Wan X, Sun QA, Hess D, Liu H, Deschenes I, Rosenbaum DS, Stamler JS, Laurita KR (2012) Aberrant S-nitrosylation mediates calcium-triggered ventricular arrhythmia in the intact heart. Proc Natl Acad Sci USA 109:18186–18191. doi:10.1073/pnas.1210565109

    Article  PubMed  CAS  Google Scholar 

  20. Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58:73–82. doi:10.1016/j.jacc.2010.12.044

    Article  PubMed  CAS  Google Scholar 

  21. Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintron M, Chen T, Marcinek DJ, Dorn GW, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108:837–846. doi:10.1161/CIRCRESAHA.110.232306

    Article  PubMed  CAS  Google Scholar 

  22. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. doi:10.1152/physrev.00018.2001

    PubMed  CAS  Google Scholar 

  23. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471. doi:10.1038/nrd3403

    Article  PubMed  CAS  Google Scholar 

  24. Eager KR, Dulhunty AF (1998) Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg2+ and ATP. J Membr Biol 163:9–18. doi:10.1007/S002329900365

    Article  PubMed  CAS  Google Scholar 

  25. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99. doi:10.1038/415096a

    Article  PubMed  CAS  Google Scholar 

  26. Erickson JR, He BJ, Grumbach IM, Anderson ME (2011) CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 91:889–915. doi:10.1152/physrev.00018.2010

    Article  PubMed  CAS  Google Scholar 

  27. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474. doi:10.1016/j.cell.2008.02.048

    Article  PubMed  CAS  Google Scholar 

  28. Fujii T, Onohara N, Maruyama Y, Tanabe S, Kobayashi H, Fukutomi M, Nagamatsu Y, Nishihara N, Inoue R, Sumimoto H, Shibasaki F, Nagao T, Nishida M, Kurose H (2005) Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. J Biol Chem 280:23041–23047. doi:10.1074/jbc.M409397200

    Article  PubMed  CAS  Google Scholar 

  29. Fukuda K, Davies SS, Nakajima T, Ong BH, Kupershmidt S, Fessel J, Amarnath V, Anderson ME, Boyden PA, Viswanathan PC, Roberts LJ, Balser JR (2005) Oxidative mediated lipid peroxidation recapitulates proarrhythmic effects on cardiac sodium channels. Circ Res 97:1262–1269. doi:10.1161/01.RES.0000195844.31466.e9

    Article  PubMed  CAS  Google Scholar 

  30. Gordon LI, Burke MA, Singh AT, Prachand S, Lieberman ED, Sun L, Naik TJ, Prasad SV, Ardehali H (2009) Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J Biol Chem 284:2080–2087. doi:10.1074/jbc.M804570200

    Article  PubMed  CAS  Google Scholar 

  31. Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826. doi:10.1016/j.jacc.2005.09.051

    Article  PubMed  CAS  Google Scholar 

  32. Grutzner A, Garcia-Manyes S, Kotter S, Badilla CL, Fernandez JM, Linke WA (2009) Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J 97:825–834. doi:10.1016/j.bpj.2009.05.037

    Article  PubMed  CAS  Google Scholar 

  33. Haworth RS, Stathopoulou K, Candasamy AJ, Avkiran M (2012) Neurohormonal regulation of cardiac histone deacetylase 5 nuclear localization by phosphorylation-dependent and phosphorylation-independent mechanisms. Circ Res 110:1585–1595. doi:10.1038/nm.2506

    Article  PubMed  CAS  Google Scholar 

  34. He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, Anderson ME (2011) Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17:1610–1618. doi:10.1038/nm.2506

    Article  PubMed  CAS  Google Scholar 

  35. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di LF, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  PubMed  CAS  Google Scholar 

  36. Hertelendi Z, Toth A, Borbely A, Galajda Z, van der Velden J, Stienen GJ, Edes I, Papp Z (2008) Oxidation of myofilament protein sulfhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes. Antioxid Redox Signal 10:1175–1184. doi:10.1089/ars.2007.2014

    Article  PubMed  CAS  Google Scholar 

  37. Heusch G, Schulz R (2011) A radical view on the contractile machinery in human heart failure. J Am Coll Cardiol 57:310–312. doi:10.1016/j.jacc.2010.06.057

    Article  PubMed  CAS  Google Scholar 

  38. Heusch P, Canton M, Aker S, van de Sand A, Konietzka I, Rassaf T, Menazza S, Brodde OE, Di LF, Heusch G, Schulz R (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 160:1408–1416. doi:10.1111/j.1476-5381.2010.00793.x

    Article  PubMed  CAS  Google Scholar 

  39. Hingtgen SD, Tian X, Yang J, Dunlay SM, Peek AS, Wu Y, Sharma RV, Engelhardt JF, Davisson RL (2006) Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 26:180–191. doi:10.1152/physiolgenomics.00029.2005

    Article  PubMed  CAS  Google Scholar 

  40. Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, Yamaguchi O, Mano T, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105:509–515. doi:10.1161/hc0402.102863

    Article  PubMed  CAS  Google Scholar 

  41. Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81:412–419. doi:10.1093/cvr/cvn301

    Article  PubMed  CAS  Google Scholar 

  42. Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20:1546–1548. doi:10.1096/fj.05-4642fje

    Article  PubMed  CAS  Google Scholar 

  43. Kaludercic N, Carpi A, Menabo R, Di LF, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332. doi:10.1016/j.bbamcr.2010.09.010

    Article  PubMed  CAS  Google Scholar 

  44. Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC, Pacak K, Kass DA, Di LF, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202. doi:10.1161/CIRCRESAHA.109.198366

    Article  PubMed  CAS  Google Scholar 

  45. Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH (2005) 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 11:571–578. doi:10.1016/j.molmed.2005.10.006

    Article  PubMed  CAS  Google Scholar 

  46. Kass DA, Shah AM (2013) Redox and nitrosative regulation of cardiac remodeling. Antioxid Redox Signal 18:1021–1023. doi:10.1089/ars.2012.4942

    Article  PubMed  CAS  Google Scholar 

  47. Kim YM, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B (2008) Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. J Am Coll Cardiol 51:68–74. doi:10.1016/j.jacc.2007.07.085

    Article  PubMed  CAS  Google Scholar 

  48. Kim YS, Morgan MJ, Choksi S, Liu ZG (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26:675–687. doi:10.1016/j.molcel.2007.04.021

    Article  PubMed  CAS  Google Scholar 

  49. Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, Zhang D, Nakamura T, Takimoto E, Kass DA (2011) Pivotal role of cardiomyocyte TGF-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest 121:2301–2312. doi:10.1172/JCI44824

    Article  PubMed  CAS  Google Scholar 

  50. Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis, in the heart. Circ Res 108:1017–1036. doi:10.1161/CIRCRESAHA.110.225730

    Article  PubMed  CAS  Google Scholar 

  51. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA 107:15565–15570. doi:10.1073/pnas.1002178107

    Article  PubMed  CAS  Google Scholar 

  52. Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA, Cohen RA, Liao R, Siwik DA, Colucci WS (2005) Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 111:1192–1198. doi:10.1161/01.CIR.0000157148.59308.F5

    Article  PubMed  CAS  Google Scholar 

  53. Lassegue B, San MA, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110:1364–1390. doi:10.1161/CIRCRESAHA.111.243972

    Article  PubMed  CAS  Google Scholar 

  54. Li J, Zhu H, Shen E, Wan L, Arnold JM, Peng T (2010) Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 59:2033–2042. doi:10.2337/db09-1800

    Article  PubMed  CAS  Google Scholar 

  55. Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51:319–325. doi:10.1161/HYPERTENSIONAHA.107.101980

    Article  PubMed  CAS  Google Scholar 

  56. Lu D, Liu J, Jiao J, Long B, Li Q, Tan W, Li P (2013) Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem. Ahead of print. doi:10.1074/jbc.M112.442061

  57. Ma J, Wang Y, Zheng D, Wei M, Xu H, Peng T (2013) Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res 97:77–87. doi:10.1093/cvr/cvs309

    Article  PubMed  CAS  Google Scholar 

  58. Mak S, Newton GE (2001) Vitamin C augments the inotropic response to dobutamine in humans with normal left ventricular function. Circulation 103:826–830. doi:10.1161/01.CIR.103.6.826

    Article  PubMed  CAS  Google Scholar 

  59. Mak S, Newton GE (2004) Redox modulation of the inotropic response to dobutamine is impaired in patients with heart failure. Am J Physiol Heart Circ Physiol 286:H789–H795. doi:0.1152/ajpheart.00633.2003

    Article  PubMed  CAS  Google Scholar 

  60. Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11. doi:10.1161/01.RES.87.1.8

    Article  PubMed  CAS  Google Scholar 

  61. Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398. doi:10.1161/01.RES.0000088351.58510.21

    Article  PubMed  CAS  Google Scholar 

  62. Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, Fong GH, Tian R, Sadoshima J (2013) Broad Suppression of NADPH Oxidase Activity Exacerbates Ischemia/Reperfusion Injury Through Inadvertent Downregulation of HIF-1 and Upregulation of PPARalpha. Circ Res. Ahead of print. 10.1161/CIRCRESAHA.111.300171

  63. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie LH, Tian B, Sadoshima J (2013) Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res 112:651–663. doi:10.1161/CIRCRESAHA.111.300171

    Article  PubMed  CAS  Google Scholar 

  64. Matsushima S, Zablocki D, Sadoshima J (2011) Application of recombinant thioredoxin1 for treatment of heart disease. J Mol Cell Cardiol 51:570–573. doi:10.1016/j.yjmcc.2010.09.020

    Article  PubMed  CAS  Google Scholar 

  65. Maytin M, Siwik DA, Ito M, Xiao L, Sawyer DB, Liao R, Colucci WS (2004) Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109:1168–1171. doi:10.1161/01.CIR.0000117229.60628.2F

    Article  PubMed  CAS  Google Scholar 

  66. Minhas KM, Saraiva RM, Schuleri KH, Lehrke S, Zheng M, Saliaris AP, Berry CE, Barouch LA, Vandegaer KM, Li D, Hare JM (2006) Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circ Res 98:271–279. doi:10.1161/01.RES.0000200181.59551.71

    Article  PubMed  CAS  Google Scholar 

  67. Mordente A, Meucci E, Silvestrini A, Martorana GE, Giardina B (2012) Anthracyclines and mitochondria. Adv Exp Med Biol 942:385–419. doi:10.1007/978-94-007-2869-1_18

    Article  PubMed  CAS  Google Scholar 

  68. Morgan B, Ezerina D, Amoako TN, Riemer J, Seedorf M, Dick TP (2013) Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol 9:119–125. doi:10.1038/nchembio.1142

    Article  PubMed  CAS  Google Scholar 

  69. Morris TE, Sulakhe PV (1997) Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic Biol Med 22:37–47. doi:10.1016/S0891-5849(96)00238-9

    Article  PubMed  CAS  Google Scholar 

  70. Nabeebaccus A, Zhang M, Shah AM (2011) NADPH oxidases and cardiac remodelling. Heart Fail Rev 16:5–12. doi:10.1007/s10741-010-9186-2

    Article  PubMed  CAS  Google Scholar 

  71. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. doi:10.1152/physrev.00029.2006

    Article  PubMed  CAS  Google Scholar 

  72. Palomeque J, Rueda OV, Sapia L, Valverde CA, Salas M, Petroff MV, Mattiazzi A (2009) Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species. Circ Res 105:1204–1212. doi:10.1161/CIRCRESAHA.109.204172

    Article  PubMed  CAS  Google Scholar 

  73. Penna C, Mancardi D, Rastaldo R, Pagliaro P (2009) Cardioprotection: a radical view Free radicals in pre and postconditioning. Biochim Biophys Acta 1787:781–793. doi:10.1016/j.bbabio.2009.02.008

    Article  PubMed  CAS  Google Scholar 

  74. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–2196. doi:10.1161/01.CIR.0000127959.28627.F8

    Article  PubMed  Google Scholar 

  75. Prata C, Maraldi T, Fiorentini D, Zambonin L, Hakim G, Landi L (2008) Nox-generated ROS modulate glucose uptake in a leukaemic cell line. Free Radic Res 42:405–414. doi:10.1080/10715760802047344

    Article  PubMed  CAS  Google Scholar 

  76. Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333:1440–1445. doi:10.1126/science.1202768

    Article  PubMed  CAS  Google Scholar 

  77. Reilly SN, Jayaram R, Nahar K, Antoniades C, Verheule S, Channon KM, Alp NJ, Schotten U, Casadei B (2011) Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation 124:1107–1117. doi:10.1161/CIRCULATIONAHA.111.029223

    Article  PubMed  CAS  Google Scholar 

  78. Remondino A, Kwon SH, Communal C, Pimentel DR, Sawyer DB, Singh K, Colucci WS (2003) Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92:136–138. doi:10.1161/01.RES.0000054624.03539.B4

    Article  PubMed  CAS  Google Scholar 

  79. Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793. doi:10.1016/j.freeradbiomed.2011.01.003

    Article  PubMed  CAS  Google Scholar 

  80. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103:7432–7437. doi:10.1073/pnas.0510444103

    Article  PubMed  CAS  Google Scholar 

  81. Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378:704–712. doi:10.1016/S0140-6736(11)60894-5

    Article  PubMed  CAS  Google Scholar 

  82. Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi:10.1007/s00395-011-0190-z

    Article  PubMed  CAS  Google Scholar 

  83. Song YH, Cho H, Ryu SY, Yoon JY, Park SH, Noh CI, Lee SH, Ho WK (2010) L-type Ca(2+) channel facilitation mediated by H(2)O(2)-induced activation of CaMKII in rat ventricular myocytes. J Mol Cell Cardiol 48:773–780. doi:10.1016/j.yjmcc.2009.10.020

    Article  PubMed  CAS  Google Scholar 

  84. Sterba M, Popelova O, Vavrova A, Jirkovsky E, Kovarikova P, Gersl V, Simunek T (2013) Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal 18:899–929. doi:10.1089/ars.2012.4795

    Article  PubMed  CAS  Google Scholar 

  85. Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, Gao Z, He BJ, Luczak ED, Joiner ML, Kutschke W, Yang J, Donahue JK, Weiss RM, Grumbach IM, Ogawa M, Chen PS, Efimov I, Dobrev D, Mohler PJ, Hund TJ, Anderson ME (2011) Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest 121:3277–3288. doi:10.1172/JCI57833

    Article  PubMed  CAS  Google Scholar 

  86. Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M (2004) Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci 1015:202–213. doi:10.1196/annals.1302.017

    Article  PubMed  CAS  Google Scholar 

  87. Takewa Y, Chemaly ER, Takaki M, Liang LF, Jin H, Karakikes I, Morel C, Taenaka Y, Tatsumi E, Hajjar RJ (2009) Mechanical work and energetic analysis of eccentric cardiac remodeling in a volume overload heart failure in rats. Am J Physiol Heart Circ Physiol 296:H1117–H1124. doi:10.1152/ajpheart.01120.2008

    Article  PubMed  CAS  Google Scholar 

  88. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y, Kass DA (2005) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115:1221–1231. doi:10.1172/JCI21968

    PubMed  CAS  Google Scholar 

  89. Tiganis T (2011) Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci 32:82–89. doi:10.1016/j.tips.2010.11.006

    Article  PubMed  CAS  Google Scholar 

  90. Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122:928–937. doi:10.1161/CIRCULATIONAHA.108.847731

    Article  PubMed  Google Scholar 

  91. Touyz RM, Mercure C, He Y, Javeshghani D, Yao G, Callera GE, Yogi A, Lochard N, Reudelhuber TL (2005) Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 45:530–537. doi:10.1161/01.HYP.0000158845.49943.5e

    Article  PubMed  CAS  Google Scholar 

  92. Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138. doi:10.1172/JCI26620

    Article  PubMed  CAS  Google Scholar 

  93. Wagner S, Rokita AG, Anderson ME, Maier LS (2012) Redox regulation of sodium and calcium handling. Antioxid Redox Signal. doi:10.1089/ars.2012.4818

  94. Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS (2011) Reactive oxygen species-activated Ca/calmodulin kinase IIdelta is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565. doi:10.1161/CIRCRESAHA.110.221911

    Article  PubMed  CAS  Google Scholar 

  95. Wang SB, Foster DB, Rucker J, O’Rourke B, Kass DA, Van Eyk JE (2011) Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Circ Res 109:750–757. doi:10.1161/CIRCRESAHA.111.246124

    Article  PubMed  CAS  Google Scholar 

  96. Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, Vonhof S, Bickeboller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nurnberg P, Pfreundschuh M, Trumper L, Brockmoller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762. doi:10.1161/CIRCULATIONAHA.105.576850

    Article  PubMed  CAS  Google Scholar 

  97. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB (2002) Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282:C926–C934. doi:10.1152/ajpcell.00254.2001

    Article  PubMed  CAS  Google Scholar 

  98. Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto I, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K (2003) Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci USA 100:15883–15888. doi:10.1073/pnas.2136717100

    Article  PubMed  CAS  Google Scholar 

  99. Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner SF, Sadoshima J (2003) Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 112:1395–1406. doi:10.1172/JCI17700

    PubMed  CAS  Google Scholar 

  100. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336. doi:10.1126/science.1172308

    Article  PubMed  CAS  Google Scholar 

  101. Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ, Wang M, Anilkumar N, Yu B, Dong X, Walker SJ, Brandes RP, Shah AM (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA 107:18121–18126. doi:10.1073/pnas.1009700107

    Article  PubMed  CAS  Google Scholar 

  102. Zhang M, Perino A, Ghigo A, Hirsch E, Shah AM (2012) NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal 18(9):1024–1041. doi:10.1089/ars.2012.4550

    PubMed  Google Scholar 

  103. Zhao Y, McLaughlin D, Robinson E, Harvey AP, Hookham MB, Shah AM, McDermott BJ, Grieve DJ (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res 70:9287–9297. doi:10.1158/0008-5472.CAN-10-2664

    Article  PubMed  CAS  Google Scholar 

  104. Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321. doi:10.1016/j.cardiores.2006.02.019

    Article  PubMed  CAS  Google Scholar 

  105. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014. doi:10.1084/jem.192.7.1001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by the British Heart Foundation (RE/08/003); a Fondation Leducq Transatlantic Network of Excellence Award; the Department of Health via a National Institute for Health Research (NIHR) Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust; a Medical Research Council Fellowship to AAN; and a Norwegian Health Association Fellowship to ADH.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay M. Shah.

Additional information

This article is part of the Topical Collection Novel Perspectives on Heart Failure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafstad, A.D., Nabeebaccus, A.A. & Shah, A.M. Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 108, 359 (2013). https://doi.org/10.1007/s00395-013-0359-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0359-8

Keywords

Navigation