Skip to main content
Log in

NADPH oxidases and cardiac remodelling

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

A heart under chronic stress undergoes cardiac remodelling, a process that comprises structural and functional changes including cardiomyocyte hypertrophy, interstitial fibrosis, contractile dysfunction, cell death and ventricular dilatation. Reactive oxygen species (ROS)-dependent modulation of intracellular signalling is implicated in the development of cardiac remodelling. Among the different ROS sources that are present in the heart, NADPH oxidases (NOXs) are particularly important in redox signalling. NOX isoforms are expressed in multiple cell types including cardiomyocytes, fibroblasts, endothelial cells and inflammatory cells—with the two main isoforms expressed in the heart being NOX2 and NOX4. Recent studies indicate that NOX-dependent signalling is involved in the development of cardiomyocyte hypertrophy, interstitial fibrosis and post-MI remodelling. NOXs may also be involved in the genesis of contractile dysfunction and myocyte apoptosis. Here, we review the main effects of NOXs in the pathogenesis of cardiac remodelling and the redox-sensitive signalling pathways that underlie these effects. The elucidation of mechanisms involved in NOX-dependent regulation of cardiac remodelling may lead to new therapeutic targets for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol 35(3):569–582

    Article  PubMed  CAS  Google Scholar 

  2. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367

    Article  PubMed  Google Scholar 

  3. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508

    PubMed  CAS  Google Scholar 

  4. Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49(2):241–248

    Article  PubMed  CAS  Google Scholar 

  5. Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81(3):457–464

    Article  PubMed  CAS  Google Scholar 

  6. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    PubMed  CAS  Google Scholar 

  7. Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marban E, Hare JM (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104(20):2407–2411

    Article  PubMed  CAS  Google Scholar 

  8. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88(5):529–535

    PubMed  CAS  Google Scholar 

  9. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y, Kass DA (2005) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115(5):1221–1231

    PubMed  CAS  Google Scholar 

  10. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41(12):2164–2171

    Article  PubMed  CAS  Google Scholar 

  11. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8(5–6):691–728

    Article  PubMed  CAS  Google Scholar 

  12. Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397(2):342–344

    Article  PubMed  CAS  Google Scholar 

  13. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  PubMed  CAS  Google Scholar 

  14. Sumimoto H, Miyano K, Takeya R (2005) Molecular composition and regulation of the nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338(1):677–686

    Article  PubMed  CAS  Google Scholar 

  15. Lambeth JD, Kawahara T, Diebold B (2007) Regulation of nox and duox enzymatic activity and expression. Free Radic Biol Med 43(3):319–331

    Article  PubMed  CAS  Google Scholar 

  16. Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47(9):1239–1253

    Article  PubMed  CAS  Google Scholar 

  17. Hordijk PL (2006) Regulation of NADPH oxidases: the role of rac proteins. Circ Res 98(4):453–462

    Article  PubMed  CAS  Google Scholar 

  18. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18(1):69–82

    Article  PubMed  CAS  Google Scholar 

  19. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, Krause KH (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406(1):105–114

    Article  PubMed  CAS  Google Scholar 

  20. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK (2008) Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45(9):1340–1351

    Article  PubMed  CAS  Google Scholar 

  21. Anilkumar N, Sirker A, Shah AM (2009) Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci 14:3168–3187

    Article  PubMed  CAS  Google Scholar 

  22. Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35(7):851–859

    Article  PubMed  CAS  Google Scholar 

  23. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB (2002) Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282(4):C926–C934

    PubMed  CAS  Google Scholar 

  24. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40(4):477–484

    Article  PubMed  CAS  Google Scholar 

  25. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105(3):293–296

    Article  PubMed  CAS  Google Scholar 

  26. Hingtgen SD, Tian X, Yang J, Dunlay SM, Peek AS, Wu Y, Sharma RV, Engelhardt JF, Davisson RL (2006) Nox2-containing NADPH oxidase and akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 26(3):180–191

    Article  PubMed  CAS  Google Scholar 

  27. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103(19):7432–7437

    Article  PubMed  CAS  Google Scholar 

  28. Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA, Cohen RA, Liao R, Siwik DA, Colucci WS (2005) Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on ras. Circulation 111(9):1192–1198

    Article  PubMed  CAS  Google Scholar 

  29. Clerk A, Pham FH, Fuller SJ, Sahai E, Aktories K, Marais R, Marshall C, Sugden PH (2001) Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol Cell Biol 21(4):1173–1184

    Article  PubMed  CAS  Google Scholar 

  30. Izumiya Y, Kim S, Izumi Y, Yoshida K, Yoshiyama M, Matsuzawa A, Ichijo H, Iwao H (2003) Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling. Circ Res 93(9):874–883

    Article  PubMed  CAS  Google Scholar 

  31. Wu S, Gao J, Ohlemeyer C, Roos D, Niessen H, Kottgen E, Gessner R (2005) Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med 39(12):1601–1610

    Article  PubMed  CAS  Google Scholar 

  32. Tu VC, Sun H, Bowden GT, Chen QM (2007) Involvement of oxidants and AP-1 in angiotensin II-activated NFAT3 transcription factor. Am J Physiol Cell Physiol 292(4):C1248–C1255

    Article  PubMed  CAS  Google Scholar 

  33. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34(2):233–240

    Article  PubMed  CAS  Google Scholar 

  34. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93(9):802–805

    Article  PubMed  CAS  Google Scholar 

  35. Maytin M, Siwik DA, Ito M, Xiao L, Sawyer DB, Liao R, Colucci WS (2004) Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109(9):1168–1171

    Article  PubMed  CAS  Google Scholar 

  36. Touyz RM, Mercure C, He Y, Javeshghani D, Yao G, Callera GE, Yogi A, Lochard N, Reudelhuber TL (2005) Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 45(4):530–537

    Article  PubMed  CAS  Google Scholar 

  37. Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20(9):1546–1548

    Article  PubMed  CAS  Google Scholar 

  38. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT (2002) Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol 161(5):1773–1781

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura T, Kataoka K, Fukuda M, Nako H, Tokutomi Y, Dong YF, Ichijo H, Ogawa H, Kim-Mitsuyama S (2009) Critical role of apoptosis signal-regulating kinase 1 in aldosterone/salt-induced cardiac inflammation and fibrosis. Hypertension 54(3):544–551

    Article  PubMed  CAS  Google Scholar 

  40. Yamada T, Nagata K, Cheng XW, Obata K, Saka M, Miyachi M, Naruse K, Nishizawa T, Noda A, Izawa H, Kuzuya M, Okumura K, Murohara T, Yokota M (2009) Long-term administration of nifedipine attenuates cardiac remodeling and diastolic heart failure in hypertensive rats. Eur J Pharmacol 615(1–3):163–170

    Article  PubMed  CAS  Google Scholar 

  41. Westermann D, Riad A, Richter U, Jager S, Savvatis K, Schuchardt M, Bergmann N, Tolle M, Nagorsen D, Gotthardt M, Schultheiss HP, Tschope C (2009) Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol 104(5):499–509

    Article  PubMed  CAS  Google Scholar 

  42. Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47(4):817–826

    Article  PubMed  CAS  Google Scholar 

  43. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85(3):413–423

    Article  PubMed  CAS  Google Scholar 

  44. Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A (2006) Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: the role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69(3):736–745

    Article  PubMed  CAS  Google Scholar 

  45. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9):900–907

    Article  PubMed  CAS  Google Scholar 

  46. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103(1):60–68

    Article  PubMed  CAS  Google Scholar 

  47. Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103(5):485–492

    Article  PubMed  CAS  Google Scholar 

  48. Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, Mehta JL (2008) Regulation of TGFbeta1-mediated collagen formation by LOX-1: Studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 283(16):10226–10231

    Article  PubMed  CAS  Google Scholar 

  49. MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ, Shah AM (2001) Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation 104(24):2967–2974

    Article  PubMed  CAS  Google Scholar 

  50. Cheng XW, Okumura K, Kuzuya M, Jin Z, Nagata K, Obata K, Inoue A, Hirashiki A, Takeshita K, Unno K, Harada K, Shi GP, Yokota M, Murohara T (2009) Mechanism of diastolic stiffening of the failing myocardium and its prevention by angiotensin receptor and calcium channel blockers. J Cardiovasc Pharmacol 54(1):47–56

    Article  PubMed  CAS  Google Scholar 

  51. Peng T, Lu X, Feng Q (2005) Pivotal role of gp91phox-containing NADH oxidase in lipopolysaccharide-induced tumor necrosis factor-alpha expression and myocardial depression. Circulation 111(13):1637–1644

    Article  PubMed  CAS  Google Scholar 

  52. Zhu H, Shan L, Peng T (2009) Rac1 mediates sex difference in cardiac tumor necrosis factor-alpha expression via NADPH oxidase-ERK1/2/p38 MAPK pathway in endotoxemia. J Mol Cell Cardiol 47(2):264–274

    Article  PubMed  CAS  Google Scholar 

  53. Li SY, Yang X, Ceylan-Isik AF, Du M, Sreejayan N, Ren J (2006) Cardiac contractile dysfunction in Lep/Lep obesity is accompanied by NADPH oxidase activation, oxidative modification of sarco(endo)plasmic reticulum Ca2+-ATPase and myosin heavy chain isozyme switch. Diabetologia 49(6):1434–1446

    Article  PubMed  CAS  Google Scholar 

  54. Guo Z, Xia Z, Jiang J, McNeill JH (2007) Downregulation of NADPH oxidase, antioxidant enzymes, and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N-acetyl-L-cysteine. Am J Physiol Heart Circ Physiol 292(4):H1728–H1736

    Article  PubMed  CAS  Google Scholar 

  55. Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321

    Article  PubMed  CAS  Google Scholar 

  56. Yano M, Okuda S, Oda T, Tokuhisa T, Tateishi H, Mochizuki M, Noma T, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2005) Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation 112(23):3633–3643

    Article  PubMed  CAS  Google Scholar 

  57. Palomeque J, Rueda OV, Sapia L, Valverde CA, Salas M, Petroff MV, Mattiazzi A (2009) Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species. Circ Res 105(12):1204–1212

    Article  PubMed  CAS  Google Scholar 

  58. Dorn GW 2nd (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81(3):465–473

    Article  PubMed  CAS  Google Scholar 

  59. Qin F, Patel R, Yan C, Liu W (2006) NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med 40(2):236–246

    Article  PubMed  CAS  Google Scholar 

  60. Hayashi H, Kobara M, Abe M, Tanaka N, Gouda E, Toba H, Yamada H, Tatsumi T, Nakata T, Matsubara H (2008) Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens Res 31(2):363–375

    Article  PubMed  CAS  Google Scholar 

  61. Gilleron M, Marechal X, Montaigne D, Franczak J, Neviere R, Lancel S (2009) NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. Biochem Biophys Res Commun 388(4):727–731

    Article  PubMed  CAS  Google Scholar 

  62. Shen E, Li Y, Li Y, Shan L, Zhu H, Feng Q, Arnold JM, Peng T (2009) Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 58(10):2386–2395

    Article  PubMed  CAS  Google Scholar 

  63. Thandavarayan RA, Watanabe K, Ma M, Gurusamy N, Veeraveedu PT, Konishi T, Zhang S, Muslin AJ, Kodama M, Aizawa Y (2009) Dominant-negative p38alpha mitogen-activated protein kinase prevents cardiac apoptosis and remodeling after streptozotocin-induced diabetes mellitus. Am J Physiol Heart Circ Physiol 297(3):H911–H919

    Article  PubMed  CAS  Google Scholar 

  64. Sun Y (2007) Oxidative stress and cardiac repair/remodeling following infarction. Am J Med Sci 334(3):197–205

    Article  PubMed  Google Scholar 

  65. Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe Y (2001) Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun 281(5):1200–1206

    Article  PubMed  CAS  Google Scholar 

  66. Krijnen PA, Meischl C, Hack CE, Meijer CJ, Visser CA, Roos D, Niessen HW (2003) Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 56(3):194–199

    Article  PubMed  CAS  Google Scholar 

  67. Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H, Landmesser U (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100(6):894–903

    Article  PubMed  CAS  Google Scholar 

  68. Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51(2):319–325

    Article  PubMed  CAS  Google Scholar 

  69. Frantz S, Brandes RP, Hu K, Rammelt K, Wolf J, Scheuermann H, Ertl G, Bauersachs J (2006) Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol 101(2):127–132

    Article  PubMed  CAS  Google Scholar 

  70. Dandapat A, Hu CP, Li D, Liu Y, Chen H, Hermonat PL, Mehta JL (2008) Overexpression of TGFbeta1 by adeno-associated virus type-2 vector protects myocardium from ischemia-reperfusion injury. Gene Ther 15(6):415–423

    Article  PubMed  CAS  Google Scholar 

  71. Matsushima S, Kinugawa S, Yokota T, Inoue N, Ohta Y, Hamaguchi S, Tsutsui H (2009) Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes. Am J Physiol Heart Circ Physiol 297(1):H409–H416

    Article  PubMed  CAS  Google Scholar 

  72. Sadek MM, Haddad T, Haddad H (2009) The role of statins in chronic heart failure. Curr Opin Cardiol 24(2):167–171

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by the British Heart Foundation (RG/08/011/25922, CH/99001; RE/08/003), a Leducq Foundation Transtlantic Network of Excellence Award, and EU FP6 grant LSHM-CT-2005-018833 (EUGeneHeart).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay M. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabeebaccus, A., Zhang, M. & Shah, A.M. NADPH oxidases and cardiac remodelling. Heart Fail Rev 16, 5–12 (2011). https://doi.org/10.1007/s10741-010-9186-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9186-2

Keyword

Navigation