Skip to main content

Advertisement

Log in

WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Precipitation in the tropical Andes is strongly influenced by the ENSO phases and orographic effects. In particular, precipitation can be drastically reduced during El Niño. Decision-making about water resources relies on modelling precipitation as the main source for water availability. Here we evaluate ERA-Interim´s capacity to represent precipitation in the mountainous central Colombian Andes, a strategic region for water supply and hydropower generation, for different phases of ENSO during 1998–2012. Our results show that ERA-Interim fails to reproduce important features of precipitation spatial and temporal variability during different ENSO phases. Most critical in these results is how ERA-Interim overestimates precipitation during the dry season in El Niño years, which corresponds to the most critical condition for water supply. We show that ERA-Interim limitations are likely related to its simplified representation of the complex topography in the region, which excludes the inter-Andean Cauca river valley. To improve this, we implement a dynamical downscaling experiment using the WRF regional climate model, including a sensitivity analysis that considers three convective parameterization schemes and a convection-permitting simulation. WRF downscaling outperforms ERA-Interim in the representation of precipitation during the dry season of El Niño years, especially through correcting positive precipitation biases. This improvement is related to a better representation of orographic effects in WRF simulations. Our results suggest that ERA-Interim and, more generally, climate simulations with comparable coarse resolutions, may produce misleading precipitation overestimations in the tropical Andes if they do not adequately represent inter-Andean valleys, with important implications for water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anthes RA, Kuo YH, Hsie EY, Low-Nam S, Bettge TW (1989) Estimation of skill and uncertainty in regional numerical models. Q J R Meteorol Soc 115:763–806

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Betts AK, Miller MJ (1993) The Betts-Miller scheme. In: Emmanuel KA et al (eds) The representation of cumulus convection in numerical models. American Meteor Society, 107–121

  • Boulanger JP et al (2010) A Europe–South America network for climate change assessment and impact studies. Clim Change 98:307–329

    Article  Google Scholar 

  • Bowden JH, Otte TL, Nolte CG, Otte MJ (2012) Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J Climate 25:2805–2823

    Article  Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756

    Article  Google Scholar 

  • Bukovsky MS, Karoly DJ (2009) Precipitation simulations using WRF as a nested regional climate model. J Appl Meteor Climatol 48:2152–2159

    Article  Google Scholar 

  • Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006) Human impact on the hydrology of the Andean páramos. Earth-Sci Rev 79(1):53–72

    Article  Google Scholar 

  • Cai W, Borlace S, Lengaigne M, Van Rensch P, Collins M et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116

    Article  Google Scholar 

  • Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin FF et al (2015) Increased frequency of extreme La Nina events under greenhouse warming. Nat Clim Change 5:132–137

    Article  Google Scholar 

  • Cardoso RM, Soares PM, Miranda PM, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608. https://doi.org/10.1002/joc.3616

    Article  Google Scholar 

  • Celleri R, Willems P, Buytaert W, Feyen J (2007) Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol Process 21(24):3316–3327

    Article  Google Scholar 

  • Chotamonsak C, Salathé EP, Kreasuwan J, Chantara S, Siriwitayakorn K (2011) Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmos Sci Lett. https://doi.org/10.1002/asl.313

    Google Scholar 

  • Chotamonsak C, Salathé EP, Kreasuwan J, Chantara S (2012) Evaluation of precipitation simulations over Thailand using a WRF regional climate model. Chiang Mai J Sci 39:623–628

    Google Scholar 

  • Collins WD et al (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR Techical Note, NCAR/TN-464 + STR, p 226

  • Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634

    Article  Google Scholar 

  • Data C, Room M, Portal CCW (2000) Multivariate ENSO index (MEI). https://www.esrl.noaa.gov/psd/enso/mei/ARcHivEd=MeI/200601/mei.html (Updated in 6 Feb 2006)

  • Debreu L, Blayo E (2008) Two-way embedding algorithms: a review. Ocean Dyn 58:415–428

    Article  Google Scholar 

  • Debreu L, Marchesiello P, Penven P, Cambon G (2012) Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Model 49:1–21

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Duan W, Hu J (2016) The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: results from an earth system model. Clim Dyn 46:3599–3615

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res Atmos. https://doi.org/10.1029/2002JD003296

    Google Scholar 

  • Fernández-González S, Valero F, Sánchez JL, Gascón E, López L, García-Ortega E, Merino A (2015) Numerical simulations of snowfall events: sensitivity analysis of physical parameterization. J Geophys Res Atmos. https://doi.org/10.1002/2015JD023793

    Google Scholar 

  • Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res Atmos 104:6335–6352

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A et al (2009) Understanding El Nino in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340

    Article  Google Scholar 

  • Gutiérrez F, Dracup JA (2001) An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Nino–Southern Oscillation indicators. J Hydrol 246(1):181–196

    Article  Google Scholar 

  • Harris LM, Durran DR (2010) An idealized comparison of one-way and two-way grid nesting. Mon Weather Rev 138:2174–2187

    Article  Google Scholar 

  • Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551–1564

    Article  Google Scholar 

  • Hong SY, Dudhia J (2012) Next-generation numerical weather prediction: bridging parameterization, explicit clouds, and large eddies. Bull Am Meteor Soc 93(1):ES6–ES9

    Article  Google Scholar 

  • Hong SY, Lim JO (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc 42:129–151

    Google Scholar 

  • Hoyos N, Escobar J, Restrepo JC et al (2013) Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: the human toll of an extreme weather event. Appl Geogr 39:16–25

    Article  Google Scholar 

  • Janjić ZI (1994) The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122(5):927–945

    Article  Google Scholar 

  • Janjić ZI (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP 437:61

    Google Scholar 

  • Jones P, Harris I (2013) CRU TS3. 21: climatic research unit (CRU) time-series (TS) version 3.21 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2012). NCAS British Atmospheric Data Centre

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449

    Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteorological Society, Boston, MA, pp 165–170

    Chapter  Google Scholar 

  • Køltzow M, Iversen T, Haugen JE (2008) Extended Big-Brother experiments: the role of lateral boundary data quality and size of integration domain in regional climate modelling. Tellus A 60:398–410

    Article  Google Scholar 

  • Leung LR, Qian Y (2003) The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J Hydrometeorol 4:1025–1043

    Article  Google Scholar 

  • Liang XZ, Xu M, Yuan X, Ling T, Choi HI, Zhang F et al (2012) Regional climate–weather research and forecasting model. Bull Am Meteorol Soc 93:1363–1387

    Article  Google Scholar 

  • Liu Z, Ostrenga D, Teng W, Kempler S (2012a) Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull Am Meteorol Soc 93:1317–1325

    Article  Google Scholar 

  • Liu P, Tsimpidi AP, Hu Y, Stone B, Russell AG, Nenes A (2012b) Differences between downscaling with spectral and grid nudging using WRF. Atmos Chem Phys 12:3601–3610

    Article  Google Scholar 

  • López ME, Howell WE (1967) Katabatic winds in the equatorial Andes. J Atmos Sci 24:29–35

    Article  Google Scholar 

  • Magrín G, Gay-García C, Cruz-Choque D, Giménez JC, Moreno AR, Nagy GJ, Nobre C, Villamizar A (2007) Latin America. Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change

  • Mass CF, Ovens D, Westrick K, Colle BA (2002) Does increasing horizontal resolution produce more skillful forecasts? Bull Am Meteorol Soc 83(3):407–430

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model data set: A new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. https://doi.org/10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Menéndez CG, De Castro M, Sorensson A, Boulanger JP (2010) CLARIS project: towards climate downscaling in South America. Meteorol Z 19:357–362

    Article  Google Scholar 

  • Misra V, Dirmeyer PA, Kirtman BP (2003) Dynamic downscaling of seasonal simulations over South America. J Climate 16:103–117

    Article  Google Scholar 

  • Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116:D12109. https://doi.org/10.1029/2010JD015139

    Article  Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge? Clim Dyn 44:1627–1644

    Article  Google Scholar 

  • Pohl B, Crétat J (2013) On the use of nudging techniques for regional climate modeling: application for tropical convection. Clim Dyn. https://doi.org/10.1007/s00382-013-1994-3

    Google Scholar 

  • Pohl B, Crétat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379

    Article  Google Scholar 

  • Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean–atmospheric phenomena. J Climate 10:2690–2702

    Article  Google Scholar 

  • Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on earth): enhanced oceanland-atmosphere interaction by a low-level jet. Geophys Res Lett 27(11):1675–1678

    Article  Google Scholar 

  • Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234: 3–27

    Article  Google Scholar 

  • Poveda G, Álvarez DM, Rueda Ó (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249. https://doi.org/10.1007/s00382-010-0931-y

    Article  Google Scholar 

  • Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50(1):98–118

    Article  Google Scholar 

  • Prein AF, Gobiet A, Suklitsch M, Truhetz H, Awan NK, Keuler K, Georgievski G (2013) Added value of convection permitting seasonal simulations. Clim Dyn 41:2655–2677

    Article  Google Scholar 

  • Ranasinghe R, McLoughlin R, Short A, Symonds G (2004) The Southern Oscillation Index, wave climate, and beach rotation. Mar Geol 204:273–287

    Article  Google Scholar 

  • Ratna SB, Ratnam JV, Behera SK, Ndarana T, Takahashi K, Yamagata T (2014) Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Clim Dyn 42:2931–2953

    Article  Google Scholar 

  • Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35(4):685–711

    Article  Google Scholar 

  • Rendón AM, Salazar JF, Palacio CA, Wirth V, Brötz B (2014) Effects of urbanization on the temperature inversion breakup in a mountain valley with implications for air quality. J Appl Meteorol Climatol 53:840–858

    Article  Google Scholar 

  • Ruiz JJ, Saulo C, Nogués-Paegle J (2010) WRF model sensitivity to choice of parameterization over South America: validation against surface variables. Mon Weather Rev 138:3342–3355

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdisc Rev Clim Change 1(1):82–96

    Article  Google Scholar 

  • Sakamoto MS, Ambrizzi T, Poveda G (2011) Moisture sources and life cycle of convective systems over western Colombia. Adv Meteorol 2011:1–11

    Article  Google Scholar 

  • Santoso A, McGregor S, Jin FF, Cai W, England MH, An S et al (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126–130. https://doi.org/10.1038/nature12683

    Article  Google Scholar 

  • Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. M., Germany, Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach a. M., Germany

    Google Scholar 

  • Schwartz CS, Kain JS, Weiss SJ, Xue M, Bright DR, Kong F, Coniglio MC (2009) Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon Weather Rev 137(10):3351–3372

    Article  Google Scholar 

  • Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132:3019–3032

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG et al (2008) A Description of the Advanced Research WRF Version 3. Technical Report (June), 113

  • Soares PMM, Cardoso RM, Miranda PM, De Medeiros J, Belo-Pereira M, Espirito-Santo F (2012) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522. https://doi.org/10.1007/s00382-012-1315-2

    Article  Google Scholar 

  • Solman SA, Nunez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533–552

    Article  Google Scholar 

  • Solman SA, Sánchez E, Samuelsson P, Da Rocha RP, Li L, Marengo J et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Wang YQ, Leung LR, McGregor JL, Lee DK, Wang WC, Ding YH, Kimura F (2004) Regional Climate Modeling: Progress, Challenges, and Prospects. J Meteorol Soc Jpn 82:1599–1628. https://doi.org/10.2151/jmsj.82.1599

    Article  Google Scholar 

  • Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer HS (2013) Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: Precipitation in Germany. Clim Dyn 41:755–774. https://doi.org/10.1007/s00382-013-1727-7

    Article  Google Scholar 

  • Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. Mountain Weather Research and Forecasting: 35–119. Springer, Dordrecht

  • Zhang C, Wang Y, Lauer A, Hamilton K (2012) Configuration and evaluation of the WRF model for the study of Hawaiian Regional climate. Mon Weather Rev 140:3259–3277. https://doi.org/10.1175/MWR-D-11-00260.1

    Article  Google Scholar 

  • Zuluaga MD, Poveda G (2004) Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during 1998–2002. Av Recur Hidr 11:145–160

    Google Scholar 

Download references

Acknowledgements

Funding was provided by “Programa de investigación en la gestión de riesgo asociado con cambio climático y ambiental en cuencas hidrográficas” (UT-GRA), Convocatoria 543–2011 Colciencias. JFS was partially supported by the IAI-INPE Internship program: “Understanding Climate Change and Variability in the Americas”. JFM was partially supported by the Desert Research Institute/Division of Atmospheric Sciences and COLCIENCIAS (award No FP44842-856-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Posada-Marín.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8008 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posada-Marín, J.A., Rendón, A.M., Salazar, J.F. et al. WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Clim Dyn 52, 3609–3629 (2019). https://doi.org/10.1007/s00382-018-4403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4403-0

Keywords

Navigation