Skip to main content

Advertisement

Log in

Resolution effects on regional climate model simulations of seasonal precipitation over Europe

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We analyze a set of nine regional climate model simulations for the period 1961–2000 performed at 25 and 50 km horizontal grid spacing over a European domain in order to determine the effects of horizontal resolution on the simulation of precipitation. All of the models represent the seasonal mean spatial patterns and amount of precipitation fairly well. Most models exhibit a tendency to over-predict precipitation, resulting in a domain-average total bias for the ensemble mean of about 20% in winter (DJF) and less than 10% in summer (JJA) at both resolutions, although this bias could be artificially enhanced by the lack of a gauge correction in the observations. A majority of the models show increased precipitation at 25 km relative to 50 km over the oceans and inland seas in DJF, JJA, and ANN (annual average), although the response is strongest during JJA. The ratio of convective precipitation to total precipitation decreases over land for most models at 25 km. In addition, there is an increase in interannual variability in many of the models at 25 km grid spacing. Comparison with gridded observations indicates that a majority of models show improved skill in simulating both the spatial pattern and temporal evolution of precipitation at 25 km compared to 50 km during the summer months, but not in winter or on an annual mean basis. Model skill at higher resolution in simulating the spatial and temporal character of seasonal precipitation is found especially for Great Britain. This geographic dependence of the increased skill suggests that observed data of sufficient density are necessary to capture fine-scale climate signals. As climate models increase their horizontal resolution, it is thus a key priority to produce high quality fine scale observations for model evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res Atmospheres 108:4257. doi:10.1029/2002JD002499

    Article  Google Scholar 

  • Adam JC, Clark EA, Lettenmaier DP, Wood EF (2006) Correction of global precipitation products for orographic effects. J Clim 19:15–38. doi:10.1175/JCLI3604.1

    Article  Google Scholar 

  • Bengtsson L, Botzet M, Esch M (1995) Hurricane-type vortices in a general circulation model. Tellus Ser A 47:175–196. doi: 10.1034/j.1600-0870.1995.t01-1-00003.x

  • Boville BA (1991) Sensitivity of simulated climate to model resolution. J Clim 4:469–486

    Article  Google Scholar 

  • Castro CL, Pielke RA, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J Geophys Res Atmospheres 110:D05108. doi:10.1029/2004JD004721

    Article  Google Scholar 

  • Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR, Taylor KE, Wehner MF, Thompson SL (2003) High-resolution simulations of global climate, part 1: present climate. Clim Dyn 21:371–390. doi:10.1007/s00382-003-0339-z

    Article  Google Scholar 

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900

    Article  Google Scholar 

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res Atmospheres 108:4124. doi:10.1029/2002JD002287

    Article  Google Scholar 

  • Gao X, Xu Y, Zhao Z, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185. doi:10.1007/s00704-005-0214-4

    Article  Google Scholar 

  • Giorgi F (2002) Dependence of the surface climate interannual variability on spatial scale. Geophys Res Lett 29(23):2101. doi:10.1029/2002GL016175

    Article  Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Wea Rev 117:2325–2347

    Article  Google Scholar 

  • Giorgi F, Marinucci MR (1996) An investigation of the sensitivity of simulated precipitation to the model resolution and its implications for climate studies. Mon Wea Rev 124:148–166

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1991) Approaches to regional climate change simulation: a review. Rev Geophys 29:191–216

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Visconti G (1992) 2×CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model, 2. Climate Change Scenario 97:10011–10028

    Google Scholar 

  • Giorgi F, Shields C, Brodeur, Bates GT (1994) Regional climate change scenarios over the United States produced with a nested regional climate model: spatial and seasonal characteristics. J Clim 7:375–399

    Article  Google Scholar 

  • Giorgi F, Mearns L, Shields C, McDaniel L (1998) Regional nested model simulations of present day and 2 × CO2 climate over the Central Great Plains of the United States. Clim Change 40:457–493

    Article  Google Scholar 

  • Gong X, Barnston AG, Ward MN (2003) The effect of spatial aggregation on the skill of seasonal precipitation forecasts. J Clim 16:3059–3071. doi:10.1175/1520-0442(2003)016

    Article  Google Scholar 

  • Gordon HB, Whetton PH, Pittock AB, Fowler AM, Haylock MR (1992) Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events. Clim Dyn 8:83–102. doi:10.1007/BF00209165

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res Atmospheres 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS 85:566

    Article  Google Scholar 

  • Iorio JP, Duffy PB, Govindasamy B, Thompson SL, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim Dyn 23:243–258. doi:10.1007/s00382-004-0440-y

    Article  Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449. doi:10.1256/smsqj.52609

    Google Scholar 

  • Leung LR, Qian Y (2003) The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J Hydrometeorol 4:1025–1043

    Article  Google Scholar 

  • Mass CF, Ovens D, Westrick K, Colle BA (2002) Does increasing horizontal resolution produce more skillful forecasts?. Bull Am Meteorol Soc 83:407–430

    Article  Google Scholar 

  • Mearns LO, Giorgi F, McDaniel L, Brodeur CS (1995) Analysis of daily variability and diurnal range of temperature in a nested regional climate model: comparison with observations and doubled CO2 results. Climate Dyn 11:193–209

    Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001-2100), Working Paper 55, Tyndall Centre

  • New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856. doi:10.1175/1520-0442(1999)012

    Article  Google Scholar 

  • New MG, Hulme M, Jones PD (2000) Representing 20th century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • New MG, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Noda A (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analyses. J Meteorol Soc Japan 84:259–276

    Article  Google Scholar 

  • Pope VD, Stratton RA (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19:211–236. doi:10.1007/s00382-001-0222-8

    Article  Google Scholar 

  • Rauscher SA, Seth A, Qian JH, Camargo SJ (2006) Domain choice in an experimental nested modeling prediction system for South America. Theor Appl Climatol 86:229–246. doi:10.1007/s00704-006-0206-z

    Article  Google Scholar 

  • Rockel B, Woth K (2007) Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim Change 81:267–280

    Article  Google Scholar 

  • Rojas M (2006) Multiply nested regional climate simulation for southern South America: sensitivity to model resolution. Mon Wea Rev 134:2208–2223

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Déqué M (2008) Ability of an ensemble of regional climate models to reproduce the weather regimes during the period 1961–2000. Clim Dyn. doi:10.1007/s00382-008-0502-7

  • Seth A, Rauscher SA, Camargo SJ, Qian JH, Pal JS (2007) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480. doi:10.1007/s00382-006-0191-z

    Article  Google Scholar 

  • Stephenson DB, F FC, Royer JF (1998) Simulation of the Asian summer monsoon and its dependence on model horizontal resolution. J Meteorol Soc Jpn 76:237–265

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Tian X, Dai A, Yang D, Xie Z (2007) Effects of precipitation-bias corrections on surface hydrology over northern latitudes. J Geophys Res Atmospheres 112:D14101. doi:10.1029/2007JD008420

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorl Soc 63:1309–1369. doi:10.1175/1520-0477(1982)063

    Article  Google Scholar 

  • Xu H, Wang Y, Xie SP (2004) Effects of the Andes on eastern Pacific climate: a regional atmospheric model study. J Clim 17:589–602

    Article  Google Scholar 

  • Yang D, Kane D, Zhang Z, Legates D, Goodison B (2005) Bias corrections of long-term (1973-2004) daily precipitation data over the northern regions. Geophys Res Lett 32:L19501. doi:10.1029/2005GL024057

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the ENSEMBLES project, funded by the European Commission’s 6th Framework Programme through contract GOCE-CT-2003-505539. We acknowledge the climate dataset from the EU-FP6 project ENSEMBLES (http://www.ensembles-eu.org) and the data providers in the ECA and D project (http://www.eca.knmi.nl). This study was partly funded by the European Union FP6 project WATCH (contract number 036946). We thank all of the participating modeling groups for providing the data. We thank Malcolm Haylock and Albert Klein Tank for answering questions about the Ensembles observations, and David Lister for providing information about the CRU TS1.2 data set. We thank Fred Kucharski for providing a script to produce the Taylor diagrams. We thank Ole Bossing Christensen for data processing help, and Erik Kjellström for providing information on the SMHI time step. We are grateful to two anonymous reviewers for their thoughtful and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Rauscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauscher, S.A., Coppola, E., Piani, C. et al. Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35, 685–711 (2010). https://doi.org/10.1007/s00382-009-0607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0607-7

Keywords

Navigation