Skip to main content

Advertisement

Log in

Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The hydro-climatic variability of the Colombian Andes associated with El Niño–Southern Oscillation (ENSO) is reviewed using records of rainfall, river discharges, soil moisture, and a vegetation index (NDVI) as a surrogate for evapotranspiration. Anomalies in the components of the surface water balance during both phases of ENSO are quantified in terms of their sign, timing, and magnitude. During El Niño (La Niña), the region experiences negative (positive) anomalies in rainfall, river discharges (average and extremes), soil moisture, and NDVI. ENSO’s effects are phase-locked to the seasonal cycle, being stronger during December–February, and weaker during March–May. Besides, rainfall and river discharges anomalies show that the ENSO signal exhibits a westerly wave-like propagation, being stronger (weaker) and earlier (later) over the western (eastern) Andes. Soil moisture anomalies are land-cover type dependant, but overall they are enhanced by ENSO, showing very low values during El Niño (mainly during dry seasons), but saturation values during La Niña. A suite of large-scale and regional mechanisms cooperating at the ocean–atmosphere–land system are reviewed to explaining the identified hydro-climatic anomalies. This review contributes to an understanding of the hydro-climatic framework of a region identified as the most critical hotspot for biodiversity on Earth, and constitutes a wake-up call for scientists and policy-makers alike, to take actions and mobilize resources and minds to prevent the further destruction of the region’s valuable hydrologic and biodiversity resources and ecosystems. It also sheds lights towards the implementation of strategies and adaptation plans to coping with threats from global environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I. Surface climate. Mon Wea Rev 116:505–524

    Article  Google Scholar 

  • Aceituno P (1989) On the functioning of the Southern Oscillation in the South American sector. Part II. Upper-air circulation. J Clim 2:341–355

    Article  Google Scholar 

  • Aceituno P, Prieto M, Solari ME, Martinez A, Poveda G, Falvey M (2009) The 1877–1878 El Niño episode: Climate anomalies in South America and associated impacts. Clim Change 92:389–416

    Article  Google Scholar 

  • Amador JA (2008) The intra-Americas sea low-level jet. Overview and future research. Ann NY Acad Sci 1146:153–188

    Article  Google Scholar 

  • Ambrizzi T, Magaña V (1999) Dynamics of the impact of El Niño/Southern Oscillation on the Americas’ climate. In: Proceedings of 14th Conference on Hydrology. AMS, Dallas, pp 307–308

  • Arias PA (2005) Intra-seasonal variability of Colombia’s hydro-climatology with emphasis on the Madden-Julian Oscillation (in Spanish). M.Sc thesis, Graduate Program in Water Resources, Universidad Nacional de Colombia at Medellin

  • Curtis S, Hastenrath S (1995) Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J Geophys Res 100(C8):15,835–15,847

    Article  Google Scholar 

  • Elthair EAB, Bras R (1994) Precipitation recycling in the Amazon basin. Quart J Roy Meteor Soc 120:861–880

    Article  Google Scholar 

  • Eslava J (1993) Some climatic particularities of Colombia’s Pacific region (in Spanish). Atmósfera 17:45–63

    Google Scholar 

  • Fisher RA, Williams M, de Lourdes Ruivo M, Costa AL, Meir P (2008) Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforests sites. Agric For Meteorol 148:850–861

    Article  Google Scholar 

  • Flohn H, Fleer H (1975) Climate teleconnections with the equatorial Pacific and the role of ocean/atmosphere coupling. Atmosphere 13:96–109

    Google Scholar 

  • Frank NL, Hebert PJ (1974) Atlantic tropical systems of 1973. Mon Wea Rev 102:290–295

    Article  Google Scholar 

  • Gorshkov VG, Makarieva AM (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth System Sci 11:1013–1033

    Article  Google Scholar 

  • Gray WM, Sheaffer JD (1991) El Niño and QBO influences on tropical cyclone activity. In: Glantz WM et al (ed) Teleconnections Linking Worldwide Climate Anomalies. Cambridge University Press, Cambridge, pp 257–284

    Google Scholar 

  • Grimm AM (2003) The El Niño impact on the summer monsoon in Brazil: regional processes versus remote influences. J Clim 16:263–280

    Article  Google Scholar 

  • Grimm AM (2004) How do La Niña events disturb the summer monsoon system in Brazil? Clim Dyn 22:123–138

    Article  Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609

    Article  Google Scholar 

  • Gutiérrez F, Dracup JA (2001) An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Niño-Southern Oscillation indicators. J Hydrol 246(1–4):181–196

    Article  Google Scholar 

  • Hastenrath S (1976) Variations in low-latitude circulations and extreme climatic events in the tropical Americas. J Atmos Sci 33:202–215

    Article  Google Scholar 

  • Hastenrath S (1990) Diagnostic and prediction of anomalous river discharges in northern South America. J Clim 3:1080–1096

    Article  Google Scholar 

  • Hastenrath S (1991) Climate dynamics of the tropics. Kluwer, Dordrecht, p 488

    Google Scholar 

  • Hastenrath S (2002) The intertropical convergence zone of the eastern Pacific revisited. Int J Climatol 22:347–356

    Article  Google Scholar 

  • Hastenrath S, de Castro LC, Aceituno P (1987) The Southern Oscillation in the tropical Atlantic sector. Contrib Atmos Physics 60(4):447–464

    Google Scholar 

  • Hsu H-H (1994) Relationship between tropical heating and global circulation. Interannual variability. J Geophys Res 99(D5):10,473–10,489

    Article  Google Scholar 

  • Hurtado AF, Poveda G (2009) Linear and global space-time dependence and Taylor hypotheses for rainfall in the tropical Andes. J Geophys Res 114:D10105. doi:10.1029/2008JD011074

    Article  Google Scholar 

  • Jipp PH, Nepstad DC, Cassel DK et al (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Clim Change 39:395–412

    Google Scholar 

  • Kiladis G, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090

    Article  Google Scholar 

  • Kousky VE, Kayano MT (1994) Principal modes of outgoing longwave radiation and 250-mb circulation for the South American sector. J Clim 7:1131–1143

    Article  Google Scholar 

  • Kousky VE, Kayano MT, and Cavalcanti IFA (1984) A review of the Southern Oscillation: oceanic-atmospheric circulation changes and related rainfall anomalies. Tellus 36A:490–504

    Article  Google Scholar 

  • Lau KM, Sheu PJ (1988) Annual cycle, quasi-biennial oscillation, and Southern Oscillation in global precipitation. J Geophys Res 93(D9):10,975–10,989

    Article  Google Scholar 

  • León GE, Zea JA, Eslava JA (2000) General circulation and the intertropical convergence zone in Colombia (in Spanish). Meteorol Colomb 1:31–38

    Google Scholar 

  • Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2009) Precipitation on land versus distance from the ocean: Evidence for a forest pump of atmospheric moisture. Ecol Complexity 6:302–307

    Article  Google Scholar 

  • Malhi Y, Pegoraro E, Nobre AD et al (2002) The energy and water dynamics of a central Amazonian rain forest. J Geophys Res 107. doi:10.1029/2001JD000623

  • Mapes BE, Warner TT, Xu M, Negri AJ (2003a) Diurnal patterns of rainfall in northwestern South America. Part I. Observations and context. Mon Wea Rev 131:799–812

    Article  Google Scholar 

  • Mapes BE, Warner TT, Xu M (2003b) Diurnal patterns of rainfall in northwestern South America. Part III. Diurnal gravity waves and nocturnal convection offshore. Mon Wea Rev 131:830–844

    Article  Google Scholar 

  • Marengo JA (1992) Interannual variability of surface climate in the Amazon basin. Int J Climatol 12:853–863

    Article  Google Scholar 

  • Marengo JA, Nobre CA (2001) The hydroclimatological framework in Amazonia. In: McClaine ME, Victoria RL, Richey JE (eds) The Biogeochemistry of the Amazon Basin. Oxford University Press, New York, pp 17–42

    Google Scholar 

  • Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP Reanalyses. J Clim 17:2261–2280

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama D (2008) Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Phil Trans R Soc B 363:1773–1778. doi:10.1098/rstb.2007.0015

    Article  Google Scholar 

  • Martínez MT (1993) Major sinoptic systems in Colombia and their influence on weather patterns (in Spanish). Atmósfera 16:1–10

    Google Scholar 

  • Meir P, Woodward FI (2010) Amazonian rain forests and drought: response and vulnerability. New Phytol 187:1469–8137. doi:10.1111/j.1469-8137.2010.03390.x

    Article  Google Scholar 

  • Meir P, and co-authors (2009) The effects of drought on Amazonian rainforests. AGU Geophys Monogr Ser 186. doi:10.1029/2008GM000882

  • Mejía JF, Mesa OJ, Poveda G et al (1999) Spatial distribution, annual and semi-annual cycles of precipitation in Colombia (in Spanish). DYNA 127:7–26

    Google Scholar 

  • Mejia JF, Poveda G (2005) Atmospheric environments of mesoscale convective systems over Colombia during 1998 after TRMM and NCEP/NCAR Reanalysis (in Spanish). Rev Acad Colomb Cienc 29(113):495–514

    Google Scholar 

  • Mestas-Nuñez AM, Zhang C, Enfield DE (2005) Uncertainties in estimating moisture fluxes over the intra-Americas sea. J Hydromet 6:696–709

    Article  Google Scholar 

  • Misra V (2008) Coupled air, sea, and land interactions of the South American monsoon. J Clim 21:6389–6403

    Article  Google Scholar 

  • Misra V (2009) The amplification of the ENSO forcing over equatorial Amazon. 1562 J Hydromet 10:1561–1568

    Article  Google Scholar 

  • Montoya G, Pelkowski J, Eslava JA (2001) On the northeast trade winds and the existence of a current along the eastern Andean piedmont (in Spanish). Rev Acad Colomb Cienc 96:363–370

    Google Scholar 

  • Muñoz E, Busalacchi AJ, Nigam S, Ruiz-Barradas A (2008) Winter and summer structure of the Caribbean low-level jet. J Clim 21:1260–1276

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Nepstad DC, de Carvalho CR, Davidson EA., and co-authors (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Google Scholar 

  • Nobre CA, Obregón G, Marengo J, Fu R, Poveda G (2009) Characteristics of Amazonian climate: main features. AGU Geophysical Monograph Series 186:149–162

    Google Scholar 

  • Numaguti A (1993) Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: significance of the distribution of evaporation. J Atmos Sci 50:1874–1887

    Article  Google Scholar 

  • Oren R, Zimmermann R, Terborgh J (1996) Transpiration in upper Amazonia flood plain and upland forests in response to drought-breaking rains. Ecology 77:968–973

    Article  Google Scholar 

  • Phillips O et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347

    Google Scholar 

  • Poveda G (1994) Rainfall in Colombia: Correlation with the climate of the Pacific Ocean and empirical orthogonal function analysis (in Spanish). Proc 16th Latin American Hydraulics and Hydrology Meeting, IAHS, Santiago de Chile, vol 4:93–105

  • Poveda G (2004a) Science priorities ignore Colombia’s water needs. Nature 431:125

    Article  Google Scholar 

  • Poveda G (2004b) The hydro-climatology of Colombia: a synthesis from inter-decadal to diurnal timescales (in Spanish). Rev Acad Colomb Cienc 28(107):201-222

    Google Scholar 

  • Poveda G (2010) Mixed memory, (non) Hurst Effect, and maximum entropy of rainfall in the Tropical Andes. Adv Water Resour (Submitted)

  • Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale oceanic–atmospheric phenomena. J Clim 10:2690–2702

    Article  Google Scholar 

  • Poveda G, Mesa OJ (1999) The low level westerly jet (CHOCO jet) and two other jets in Colombia: climatology and variability during ENSO phases (in Spanish). Rev Acad Colomb Cienc 23(89):517–528

    Google Scholar 

  • Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): enhanced ocean-atmosphere-land interaction by a low-level jet. Geophys Res Lett 27:1675–1678

    Article  Google Scholar 

  • Poveda G, Pineda K (2009) Reassessment of Colombia’s tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade? Adv Geosci 22:107–116

    Article  Google Scholar 

  • Poveda G, Rojas W (1996) Impacts of El Niño phenomenon on intensification of malaria in Colombia (in Spanish). Proc XII Colomb Hydrol Meeting, Sociedad Colombiana de Ingenieros, Bogotá, pp 647–654

  • Poveda G, Salazar LF (2004) Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Rem Sens Environ 93:391–401

    Article  Google Scholar 

  • Poveda G, Gil MM, Quiceno N (1998) El ciclo anual de la hidrologia de Colombia en relacion con el ENSO y la NAO. Bull Inst Fr Etud And 27(3):721–731

    Google Scholar 

  • Poveda G, Gil MM, Quiceno N (1999) The relationship between ENSO and the annual cycle of Colombia’s hydro-climatology. 10th Symposium on Global Change Studies. Am Met Soc, Dallas

  • Poveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla R (2001a) Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia. Water Resour Res 37(8):2169–2178

    Article  Google Scholar 

  • Poveda G, Rojas W, Vlez ID, et al (2001b) Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ Health Persp 109:489–493

    Google Scholar 

  • Poveda G, Moreno HA, Vieira SC, et al (2001c) Characterization of the diurnal cycle of precipitation in the tropical Andes of Colombia. Proc. IX Ibero-American Meteorological Meeting, Buenos Aires, Argentina, 7–11 May

  • Poveda G, Velez JI, Mesa OJ (2002) Hydrological Atlas of Colombia (in Spanish). Graduate Programme in Water Resources, Universidad Nacional de Colombia at Medellin

  • Poveda G, Mesa OJ, Waylen PR (2003) Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation. In: Diaz H, Morehouse B (eds) Climate and water. Transboundary challenges in the Americas. Kluwer, Dordrecht, pp 351–371

    Google Scholar 

  • Poveda G, Carvajal LF, Ochoa A, Velez JI (2008) Assessment of diverse monthly mean streamflow forecasting models involving macro-climatic indices and hydrologic persistence in Colombia. HYDRO PREDICT 2008-international and interdisciplinary conference on predictions for hydrology, ecology, and water resources management, September 15–18, Prague, Czech Republic

  • Poveda G, Mesa OJ, Salazar LF et al (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Wea Rev 133:228–240

    Google Scholar 

  • Poveda G, Vélez JI, Mesa OJ et al (2007) Linking long-term water balances and statistical scaling to estimate river flows along the drainage network of Colombia. Jour Hydrol Eng 12(1):4–13

    Google Scholar 

  • Poveda G, Waylen PR, Pulwarty R (2006) Modern climate variability in northern South America and southern Mesoamerica. Palaeogeo Palaeoclim Palaeoecol 234:3–27

    Article  Google Scholar 

  • Pulwarty RS, Diaz HF (1993) A study of the seasonal cycle and its perturbation by ENSO in the tropical Americas. Preprints, Fourth Int Conf on Southern Hemisphere Meteorology and Oceanography, Hobart, Australia. Amer Meteor Soc 262–263

  • Rasmusson EM, Mo K (1993) Linkages between 200-mb tropical and extratropical circulation anomalies during the 1986–1989 ENSO cycle. J Clim 6:595–616

    Article  Google Scholar 

  • Ronchail JG, Cochonneau G, Molinier M, Guyot J-L et al (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22:1663–1686

    Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scales precipitation associated with El Niño-Southern Oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  • Ropelewsky CF, Bell MA (2008) Shifts in the statistics of daily rainfall in South America conditional on ENSO phase. J Clim 21:849–865

    Article  Google Scholar 

  • Rueda OA, Poveda G, Jaramillo A (2010) Probabilistic modelling of soil moisture dynamics at seasonal and interannual timescales over the tropical Andes of Colombia. (in preparation)

  • Sakamoto MS, Ambrizzi T, Poveda G (2009), Life cycle of convective systems over western Colombia. In: Proceedings MOCA-09 IAMAS, IAPSO and IACS Joint Assembly, 19–29 July, Montreal

  • Shuttleworth WJ (1988) Evaporation from Amazonian rainforest. Phil Trans R Soc London B 233:321–346

    Google Scholar 

  • Snow JW (1976) The climate of northern South America. In: Schwerdtfeger W (ed) Climates of Central and South America. Elsevier, Amsterdam, pp 295–403

    Google Scholar 

  • Stensrud DJ (1996) Importance of low-level jets to climate: a review. J Clim 9:1698–1711

    Article  Google Scholar 

  • Tootle GA, Piechota TC, Gutirrez F (2008) The relationships between Pacific and Atlantic Ocean sea surface temperatures and Colombian streamflow variability. J Hydrol 349(3-4):268–276

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Amer Meteor Soc 84:1205–1217

    Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME et al (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Inter J Remote Sens 26(20):4485–4498

    Google Scholar 

  • Velasco I, Frisch M (1987) Mesoscale convective complexes in the Americas. J Geoph Res 92(D8):9591–9613

    Article  Google Scholar 

  • Vörösmarty CJ, Willmott CJ, Choudhury BJ et al (1996) Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling. Water Resour Res 32:3,137–3,150

    Google Scholar 

  • Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29(4):411–422

    Article  Google Scholar 

  • Wang S-W (1987) A version of the circulation scheme in the equatorial zone. Beitr Phys Atmosph 60:478–487

    Google Scholar 

  • Waylen PR, Caviedes C (1986) El Niño and annual floods on the north Peruvian littoral. J Hydrol 89:141–156

    Article  Google Scholar 

  • Waylen PR, Poveda G (2002) El Niño-Southern Oscillation and aspects of western South America hydro-climatology. Hydrol Proc 16:1247–1260

    Article  Google Scholar 

  • Xavier L, Becker M, Cazenave A, and co-authors (2010) Interannual variability in water storage over 2003–2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Rem Sens Environ 114:1629–1637

    Google Scholar 

  • Xie S-P, Okumura Y, Miyama T, Timmermann A (2008) Influences of Atlantic climate change on the tropical Pacific via the Central American isthmus. J Clim 21:3914–3928

    Article  Google Scholar 

  • Yasunari T (1987) Global structure of the El Niño/Southern Oscillation. Part I. El Niño composites. J Meteor Soc Japan 65:67–79

    Google Scholar 

  • Zeng N (1999) Seasonal cycle and interannual variability in the Amazon hydrologic cycle. J Geophys Res 104(D8):9097–9106

    Article  Google Scholar 

  • Zuluaga MD, Poveda G (2004) Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during 1998-2002 (in Spanish). Avances en Recursos Hidráulicos 11:145-160

    Google Scholar 

Download references

Acknowledgments

This research was supported by COLCIENCIAS and Universidad Nacional de Colombia through the GRECIA Research Programme. We thank Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia (IDEAM), Empresas Públicas de Medellín (EPM), and Cenicafé for providing hydrological data sets. NDVI data set was provided by C.J. Tucker and J. Pinzón from the NASA Goddard Space Flight Center. We are grateful to H.A. Moreno, O.O. Hernández, C.D. Hoyos, V. Toro, A. Ceballos, and L.A. Acevedo for their help with some figures, and to Peter Bunyard, the Editor, Dr. Edwin K. Schneider, and the anonymous reviewers for their valuable comments and insights to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Poveda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poveda, G., Álvarez, D.M. & Rueda, Ó.A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36, 2233–2249 (2011). https://doi.org/10.1007/s00382-010-0931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0931-y

Keywords

Navigation