Skip to main content

Advertisement

Log in

Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The capability of a set of 7 coordinated regional climate model simulations performed in the framework of the CLARIS-LPB Project in reproducing the mean climate conditions over the South American continent has been evaluated. The model simulations were forced by the ERA-Interim reanalysis dataset for the period 1990–2008 on a grid resolution of 50 km, following the CORDEX protocol. The analysis was focused on evaluating the reliability of simulating mean precipitation and surface air temperature, which are the variables most commonly used for impact studies. Both the common features and the differences among individual models have been evaluated and compared against several observational datasets. In this study the ensemble bias and the degree of agreement among individual models have been quantified. The evaluation was focused on the seasonal means, the area-averaged annual cycles and the frequency distributions of monthly means over target sub-regions. Results show that the Regional Climate Model ensemble reproduces adequately well these features, with biases mostly within ±2 °C and ±20 % for temperature and precipitation, respectively. However, the multi-model ensemble depicts larger biases and larger uncertainty (as defined by the standard deviation of the models) over tropical regions compared with subtropical regions. Though some systematic biases were detected particularly over the La Plata Basin region, such as underestimation of rainfall during winter months and overestimation of temperature during summer months, every model shares a similar behavior and, consequently, the uncertainty in simulating current climate conditions is low. Every model is able to capture the variety in the shape of the frequency distribution for both temperature and precipitation along the South American continent. Differences among individual models and observations revealed the nature of individual model biases, showing either a shift in the distribution or an overestimation or underestimation of the range of variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amengual A, Homar V, Romero R, Alonso S, Ramis C (2012) A statistical adjustment of regional climate model outputs to local scales: application to Platja de Palma, Spain. J Clim 25:939–957

    Article  Google Scholar 

  • Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520. doi:10.1007/s00382-009-0683-8

    Article  Google Scholar 

  • Carril A, Menéndez C, Remedio ARC, Robledo F, Sorensson A, Tencer B, Boulanger JP, de Castro M, Jacob D, Le Treut H, Li L, Penalba O, Pfeifer S, Rusticucci M, Salio P, Samuelsson P, Sanchez E, Zaninelli P (2012) Performance of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39:2747–2768. doi:10.1007/s00382-012-1573-z

    Article  Google Scholar 

  • Chen M, Shi W, Xie P, Silva V, Kousky V, Higgins RW, Janowiak K (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110. doi:10.1029/2007JD009132

    Article  Google Scholar 

  • Chou SC, Marengo JA, Lyra A, Sueiro G, Pesquero J, Alves LM, Kay G, Betts R, Chagas D, Gomes JL, Bustamante J, Tavares P (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn 38:635–653. doi:10.1007/s00382-011-1002-8

    Google Scholar 

  • da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res 114:1–19. doi:10.1029/2008JD010212

    Article  Google Scholar 

  • Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405–418

    Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Domínguez M, Gaertner MA, de Rosnay P, Losada T (2010) A regional climate model simulation over West Africa: parameterization tests and analysis of land-surface fields. Clim Dyn 35:249–265. doi:10.1007/s00382-010-0769-3

  • Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev 119:1293–1302

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1993) A description of the fifth generation Penn System/NCAR Mesoscale Model (MM5). NCAR Tech Note NCAR/TN–398 + 1A, p 107

  • Held IM, Zhao M, Wyman B (2007) Dynamic radiative–convective equilibria using GCM column physics. J Atmos Sci 64:228–238

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2009) The LMDZ4 general circulation model: climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Clim Dyn 27:787–813

    Article  Google Scholar 

  • Jacob D, Van den Hurk BJJM, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Koepken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass HB, Smith RND, Yang X (2001) A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52. doi:10.1007/s10584-006-9213-4

    Article  Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to Different COordinated Regional Climate Downscaling EXperiment (CORDEX) regions. Atmosphere 3:181–199. doi:10.3390/atmos3010181

    Article  Google Scholar 

  • Kitoh A, Kusunoki S, Nakaegawa T (2011) Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). J Geophys Res 116:D06105. doi:10.1029/2010JD014920

    Article  Google Scholar 

  • Kjellström E, Boberg F, de Castro M, Christensen JH, Nikulin G, Sanchez E (2010) On the use of daily and monthly temperature and precipitation statistics as a performance indicator for regional climate models. Clim Res 44:135–150. doi:10.3354/cr00932

    Article  Google Scholar 

  • Li L (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001

    Article  Google Scholar 

  • Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quartile matching. J Geophys Res 115:D10101. doi:10.1029/2009JD012882

    Article  Google Scholar 

  • Lucas-Picher P, Wulff-Nielsen M, Christensen JH, Aðalgeirsdóttir G, Mottram R, Simonsen SB (2012) Very high resolution regional climate model simulations over Greenland: identifying added value. J Geophys Res 117:D02108. doi:10.1029/2011JD016267

    Article  Google Scholar 

  • Magrín G., Gay García C, Cruz Choque D, Giménez JC, Moreno AR, Nagy G J, Nobre C, Villamizar A (2007) Latin America. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden P J, Hanson CE (eds) Contribution of Working Group II to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 581–615

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 15:2241–2255

    Article  Google Scholar 

  • Marengo J, Ambrizzi T, de Rocha RP, Alves LM, Cuadra SV, Valverde MC, Ferraz SET, Torres RR, Santos DC (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097. doi:10.1007/s00382-009-0721-6

    Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves L., Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: Climatology and regional analyses for the Amazon, São Francisco and the Parana River Basins. Clim Dyn 38:1829–1848. doi:10.1007/s00382-011-1155-5

  • Matsuura K, Willmott CJ (2009) Terrestrial air temperature: 1900–2008 gridded monthly time series (version 2.01). Center for Climatic Research, Dep. of Geography, University of Delaware, Newark. http://climate.geog.udel.edu/~climate/

  • McGlone D, Vuille M (2012) The associations between El Niño–Southern Oscillation and tropical South American climate in a regional climate model. J Geophys Res 117:D06105. doi:10.1029/2011JD017066

    Article  Google Scholar 

  • Mearns L, Gutowski WJ, Jones R, Leung L, McGinnis S, Nunes AMB, Qian Y (2009) A regional climate change assessment program for North America. EOS Trans Am Geophys Union 90:311–312

    Article  Google Scholar 

  • Mendes D, Souza EP, Marengo J, Mendes MCD (2010) Climatology of extratropical cyclones over the South American-southern sector. Theor Appl Climatol 100:239–250. doi:10.1007/s00704-009-0161-6

    Article  Google Scholar 

  • Menéndez CG, de Castro M, Boulanger JP, D’Onofrio A, Sanchez E, Sörensson AA, Blázquez J, Elizalde A, Jacob D, Le Treut H, Li ZX, Núñez MN, Pfeiffer S, Pessacg N, Rolla A, Rojas M, Samuelsson P, Solman SA, Teichmann C (2010) Downscaling extreme month-long anomalies in southern South America. Clim Change 98:379–403. doi:10.1007/s10584-009-9739-3

    Article  Google Scholar 

  • Mesinger F (1977) Forward–backward scheme, and its use in a limited area model. Contrib Atmos Phys 50:200–210

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Negrón Juárez R, Li W, Fu R, Fernandes K (2009) Comparison of precipitation datasets over the Tropical South American and African continents. J Hydrometeorol 10:289–299

    Article  Google Scholar 

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A:41–55

    Google Scholar 

  • Nuñez M, Solman S, Cabré MF (2009) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty first century. Clim Dyn 32:1081–1095. doi:10.1007/s00382-008-0449-8

    Article  Google Scholar 

  • Pal JS et al (2007) The ITCP RegCM3 and RegCNET: regional climate modeling for the developing World. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using the Eta model. Theor Appl Climatol 99:75–93. doi:10.1007/s00704-09-0123-z

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192

    Article  Google Scholar 

  • Rauscher S, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711. doi:10.1007/s00382-009-0607-7

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim Dyn 35:1331–1347. doi:10.1007/s00382-009-0668-7

    Article  Google Scholar 

  • Rinke A, Dethloff K, Cassano JJ, Christensen JH, Curry JA, Du P, Girard E, Haugen JE, Jacob D, Jones CG, Koltzow M, Laprise R, Lynch AH, Pfeifer S, Serreze MC, Shaw MJ, Tjernström M, Wyser K, Zagar M (2006) Evaluation of an ensemble of Arctic regional climate models: spatiotemporal fields during the SHEBA year. Clim Dyn 26:459–472. doi:10.1007/s00382-005-0095-3

    Article  Google Scholar 

  • Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land-surface using in situ gauge stations. In: Proceedings of the 2nd workshop of the international precipitation working group IPGW, Monterey, Oct 2004, pp 231–247

  • Samuelsson P, Kourzeneva E, Mironov D (2010) The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ Res 15:113–129

    Google Scholar 

  • Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus 63A 63:4–23. doi:10.1111/j.1600-0870.2010.00478.x

  • Sanchez E, Gaertner MA, Gallardo C, Padorno E, Arribas A, de Castro M (2007) Impacts of a change in vegetation description on simulated European summer present-day and future climates. Clim Dyn 29:319–332

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Solman S, Pessacg N (2012a) Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model. Clim Dyn 38:281–300. doi:10.1007/s00382-011-1049-6

  • Solman S, Pessacg N (2012b) Evaluating uncertainties in regional climate simulations over South America at the seasonal scale. Clim Dyn 39:59–76. doi:10.1007/s00382-011-1219-6

    Google Scholar 

  • Solman S, Nuñez M, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533–552

    Article  Google Scholar 

  • Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic-scale data. Mon Weather Rev 118:1250–1277

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19:916–934

    Article  Google Scholar 

  • Takle ES, Roads J, Rockel B, Gutowski WJ Jr, Arritt RW, Meinke I, Jones CG, Zadra A (2007) Transferability intercomparison: an opportunity for new insight on the global water cycle and energy budget. Bull Am Meteorol Soc 88:375–384

    Article  Google Scholar 

  • Tapiador FJ, Sanchez E, Gaertner MA (2007) Regional changes in precipitation in Europe under an increased-greenhouse emissions scenario. Geophys Res Lett 34:L06701. doi:10.1029/2006GL029035

    Article  Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021

    Article  Google Scholar 

  • Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759

    Article  Google Scholar 

  • Walker MD, Diffenbaugh NS (2009) Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States. Clim Dyn 33:1131–1147. doi:10.1007/s00382-009-0603-y

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement B°212492 (CLARIS LPB A Europe-South America Network fir Climate Change Assessment and Impact Studies in La Plata Basin). This work has also been supported by UBACyT Grants X160 and Y028, Conicet Grants PIP 112-200801-00195 and PIP 112-201101-00189. Additional funding were provided by the projects Rede-CLIMA, the National Institute of Science and Technology for Climate Change (INCT-CC), from the FAPESP-Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options project (Ref. 2008/58161-1). The authors wish to acknowledge two anonymous reviewers for very helpful suggestions which certainly led to an overall improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina A. Solman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solman, S.A., Sanchez, E., Samuelsson, P. et al. Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41, 1139–1157 (2013). https://doi.org/10.1007/s00382-013-1667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1667-2

Keywords

Navigation