Skip to main content

Advertisement

Log in

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, we classified two types of El Niño–Southern Oscillation (ENSO) events within the decadal ENSO amplitude modulation cycle using a long-term coupled general circulation model simulation. We defined two climate states—strong and weak ENSO amplitude periods—and separated the characteristics of ENSO that occurred in both periods. There are two major features in the characteristics of ENSO: the first is the asymmetric spatial structure between El Niño and La Niña events; the second is that the El Niño–La Niña asymmetry is reversed during strong and weak ENSO amplitude periods. El Niño events during strong (weak) ENSO amplitude periods resemble the Eastern Pacific (Central Pacific) El Niño in terms of the spatial distribution of sea surface temperature anomalies (SSTA) and physical characteristics based on heat budget analysis. The spatial pattern of the thermocline depth anomaly for strong (weak) El Niño is identical to that for weak (strong) La Niña, but for an opposite sign and slightly different amplitude. The accumulated residuals of these asymmetric anomalies dominated by an east–west contrast structure could feed into the tropical Pacific mean state. Moreover, the residual pattern associated with El Niño–La Niña asymmetry resembles the first principal component analysis (PCA) mode of tropical Pacific decadal variability, indicating that the accumulated residuals could generate the change in climate state. Thus, the intensified ENSO amplitude yields the warm residuals due to strong El Niño and weak La Niña over the eastern tropical Pacific. This linear relationship between ENSO and the mean state is strong during the mature phases of decadal oscillation, but it is weak during the transition phases. Furthermore, the second PCA mode of tropical Pacific decadal variability plays an important role in changing the phase of the first mode. Consequently, the feedback between ENSO and the mean state is positive feedback to amplify the first PCA mode, whereas the second PCA mode is a negative feedback to lead the phase change of the first PCA mode due to their lead-lag relationship. These features could be regarded as evidence that the decadal change in properties of ENSO could be generated by the nonlinear interaction between ENSO and the mean state on a decadal-to-interdecadal time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • An S-I (2009) A review of interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor Appl Climatol 97:29–40

    Article  Google Scholar 

  • An S-I, Jin F–F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • An S-I, Jin F–F, Kang I-S (1999) The role of zonal advection feedback in phase transition and growth of ENSO in the Cane-Zebiak model. J Meteorol Soc Jpn 77:1151–1160

    Google Scholar 

  • Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Bejarano L, Jin F–F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067

    Article  Google Scholar 

  • Choi J, An S-I, Dewitte B, Hsieh WW (2009) Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J Clim 22:6597–6611

    Article  Google Scholar 

  • Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215

    Google Scholar 

  • Cibot C, Maisonnave E, Terray L, Dewitte B (2005) Mechanisms of tropical Pacific interannual-to-decadal variability in the ARPEGE/ORCA global coupled model. Clim Dyn 24:823–842

    Article  Google Scholar 

  • Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:634–674

    Google Scholar 

  • Fang Y, Chiang JCH, Chang P (2008) Variation of mean surface temperature and modulation of El Niño–Southern Oscillation variance during the past 150 years. Geophys Res Lett 35:L14709. doi:10.1029/2008GL033761

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2001) A stability analysis of tropical ocean-atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14:3086–3101

    Article  Google Scholar 

  • Flűgel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Imada Y, Kimoto M (2009) ENSO amplitude modulation related to Pacific decadal variability. Geophys Res Lett 36:L03706. doi:10.1029/2008GL036421

    Article  Google Scholar 

  • Jin F–F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F–F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Kang I-S, Kug J-S (2002) El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res 107:4372. doi:10.1029/2001JD000393

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Knutson TR, Manabe S (1998) Model assessment of decadal variability and trends in the tropical Pacific Ocean. J Clim 11:2273–2296

    Article  Google Scholar 

  • Kug J-S, Jin F–F, An S-I (2009) Two-types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F–F, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • McPhaden MJ, Zhang D (2002) Slowdown of the meridional overturning circulation in the upper Pacific ocean. Nature 415:603–608

    Article  Google Scholar 

  • Monterey GI, Levitus S (1997) Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14, US Gov. Printing Office, 5 pp

  • Neelin JD, Battisti DS, Hirst AC, Jin F–F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Oceans 103:14261–14290

    Article  Google Scholar 

  • Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1996) Quantifying southern oscillation-precipitation relationship. J Clim 9:1043–1059

    Article  Google Scholar 

  • Schopf PS, Burgman RJ (2006) A simple mechanism for ENSO residuals ans asymmetry. J Clim 19:3167–3179

    Article  Google Scholar 

  • Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean-atmosphere model. J Atmos Sci 45:549–566

    Article  Google Scholar 

  • Sun F, Yu J-Y (2009) A 10–15-year modulation cycle of ENSO intensity. J Clim 22:1718–1735

    Article  Google Scholar 

  • Timmermann A (2003) Decadal ENSO amplitude modulations: a nonlinear paradigm. Glob Planet Change 37:135–156

    Article  Google Scholar 

  • Torrence T, Webster PJ (1998) Interdecadal changes in the ENSO-monsoon system. J Clim 12:2679–2690

    Article  Google Scholar 

  • Trenberth KE, Carbon JM (2000) The southern oscillation revisited: Sea level pressures, surface temperatures and precipitation. J Clim 13:4358–4365

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Wang B, An S-I (2001) Why the properties of El Niño changed during the late 1970s. Geophys Res Lett 28:3709–3712

    Article  Google Scholar 

  • Wang XL, Ropelewski CF (1995) An assessment of ENSO-scale secular variability. J Clim 8:1584–1599

    Article  Google Scholar 

  • Wang B, Wang Y (1996) Temporal structure of the southern oscillation as revealed by waveform and wavelet analysis. J Clim 9:1586–1598

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702. doi:10.1029/2009GL038710

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Ye Z, Hsieh WW (2006) The influence of climate regime shift on ENSO. Clim Dyn 26:823–833

    Article  Google Scholar 

  • Yeh S-W, Kirtman B (2004) Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J Geophys Res 109:C11009. doi:10.1029/2004JC002442

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman B, Jin F–F (2009) Recent changes in El Niño and its projection under global warming. Nature 461:511–515

    Article  Google Scholar 

  • Yu B, Boer GJ (2004) The role of the western Pacific in decadal variability. Geophys Res Lett 31:L02204. doi:10.1029/2003GL018471

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Il An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., An, SI. & Yeh, SW. Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim Dyn 38, 2631–2644 (2012). https://doi.org/10.1007/s00382-011-1186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1186-y

Keywords

Navigation