Skip to main content

El Niño and Southern Oscillation (ENSO): A Review

  • Chapter
  • First Online:
Coral Reefs of the Eastern Tropical Pacific

Part of the book series: Coral Reefs of the World ((CORW,volume 8))

Abstract

The ENSO observing system in the tropical Pacific plays an important role in monitoring ENSO and helping improve the understanding and prediction of ENSO. Occurrence of ENSO has been explained as either a self-sustained and naturally oscillatory mode of the coupled ocean-atmosphere system or a stable mode triggered by stochastic forcing. In either case, ENSO involves the positive ocean-atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance varying with time. Because of different locations of maximum SST anomalies and associated atmospheric heating, El Niño events are classified as eastern and central Pacific warming events. The identification of two distinct types of El Niño offers a new way to examine global impacts of El Niño and to consider how El Niño may respond and feedback to a changing climate. In addition to interannual variations associated with ENSO, the tropical Pacific SSTs also fluctuate on longer timescales. The patterns of Pacific Decadal Variability (PDV) are very similar to those of ENSO. When SST anomalies are positive in the tropical eastern Pacific, they are negative to the west and over the central North and South Pacific, and positive over the tropical Indian Ocean and northeastern portions of the high-latitude Pacific Ocean. Many mechanisms have been proposed for explaining PDV. Changes in ENSO under global warming are uncertain. Increasing greenhouse gases change the mean states in the tropical Pacific, which in turn induce ENSO changes. Due to the fact that the change in mean tropical condition under global warming is quite uncertain, even during the past few decades, it is difficult to say whether ENSO will intensify or weaken, but it is very likely that ENSO will not disappear in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Google Scholar 

  • Alexander MA (2010) Extratropical air-sea interaction, sea surface temperature variability, and the Pacific Decadal Oscillation. (PDO). In: Sun D, Bryan F (eds) Climate dynamics: why does climate vary, AGU Monogr 189, Washington D.C., pp 123–148

    Google Scholar 

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15:2205–2231

    Google Scholar 

  • An S-I (2008) Interannual variations of the tropical ocean instability wave and ENSO. J Climate 21:3680–3686

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798

  • Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J Climate 14:2105–2128

    Google Scholar 

  • Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J Climate 15:3427–3442

    Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 45:1687–1712

    Google Scholar 

  • Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since AD 1661. J Climate 14:5–10

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Bunge L, Clarke AJ (2009) A verified estimation of the El Niño index NINO-3.4 since 1877. J Climate 22(14):3979–3992

    Google Scholar 

  • Chen G (2011) How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J Climate 24:4695–4700

    Google Scholar 

  • Clarke AJ (2010) Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: the “tilt” and “warm water volume” modes. J Phys Oceanogr 40(1):121–137

    Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Climate 9:2190–2196

    Google Scholar 

  • Clement AC, Baker AC, Leloup J (2010) Climate change: patterns of tropical warming. Nature Geosci 3:8–9. doi:10.1038/ngeo728

  • Clement A, DiNezio P, Deser C (2011) Rethinking the ocean’s role in the Southern Oscillation. J Climate 24:4056–4072

    Google Scholar 

  • Collins M CMIP Modelling group (BMRC Australia, CCC Canada, CCSR/NIES Japan), and 12 others (2005) El Niño-or La Ñina-like climate change? Climate Dynam 24:89–104

    Google Scholar 

  • Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose R, Rutledge G, Bessemoulin P (2011) The twentieth century reanalysis project. Q J Roy Meteor Soc 137:1–28

    Google Scholar 

  • D’Arrigo R, Wilson R, Deser C, Wiles G, Cook E, Villalba R, Tudhope A, Cole J, Linsley B (2005) Tropical North Pacific climate linkages over the past four centuries. J Climate 18:5253–5265

    Google Scholar 

  • Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Climate 8:1677–1680

    Google Scholar 

  • Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900-1989. J Climate 6:1743–1753

    Google Scholar 

  • Deser C, Wallace JM (1990) Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J Climate 3:1254–1281

    Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Climate 17:3109–3124

    Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi:10.1029/2010GL043321

  • Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon Y-O, Ohba M (2012) ENSO and Pacific decadal variability in the Community Climate System Model version 4. J Climate 25:2622–2651

    Google Scholar 

  • DeWeaver E, Nigam S (2004) On the forcing of ENSO teleconnections by anomalous heating and cooling. J Climate 17:3225–3235

    Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb K, Franks P, Chhak K, Miller A, McWilliams J, Bograd S, Arango H, Curchitser E (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi: 10.1029/2007GL032838

  • DiNezio PN, Clement AC, Vecchi G, Soden B, Kirtman B, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Climate 22:4873–4892

    Google Scholar 

  • DiNezio PN, Clement AC, Vecchi GA (2010) Reconciling differing views of tropical Pacific climate change. Eos Trans AGU 91(16):141–142

    Google Scholar 

  • Dommenget D, Latif M (2008) Generation of hyper climate modes. Geophys Res Lett 35:L02706. doi:10.1029/2007GL031087

  • Dommenget D (2010) The slab ocean El Niño. Geophys Res Lett 37:L20701. doi:10.1029/2010GL044888.1

  • Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. J Climate 14:3086–3101

    Google Scholar 

  • Feng J, Li J (2011) Influence of El Niño Modoki on spring rainfall over south China. J Geophys Res-Atmos 116:D13102. doi:10.1029/2010JD015160

  • Galeotti S, Von der Heydt A, Huber M, Bice D, Dijkstra H, Jilbert T, Lanci L, Reichart G-J (2010) Evidence for active El Nino Southern Oscillation variability in the late Miocene greenhouse climate. Geology 38:419–422

    Google Scholar 

  • Gebbie G, Eisenman I, Wittenberg AT, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semi-stochastic feedback for ENSO. J Atmos Sci 64:3281–3295

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J Roy Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Glynn PW (1985) El Niño-associated disturbance to coral reefs and post disturbance mortality by Acanthaster planci. Mar Ecol Prog Ser 26:295–300

    Google Scholar 

  • Grove RH (1998) Global impact of the 1789-93 El Niño. Nature 393:318–319

    Google Scholar 

  • Guan B, Nigam S (2008) Pacific sea surface temperatures in the twentieth century: an evolution-centric analysis of variability and trend. J Climate 21:2790–2809

    Google Scholar 

  • Guilderson TP, Schrag DP (1998) Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281:240–243

    Google Scholar 

  • Guilyardi E, Wittenberg A, Federov A, Collins M, Wang C, Capotondi A, Van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340

    Google Scholar 

  • Harrison DE, Larkin NK (1997) Darwin sea level pressure, 1876–1996: evidence for climate change? Geophys Res Lett 24:1775–1782

    Google Scholar 

  • Hayes SP, Mangum L, Picaut J, Sumi JA, Takeuchi K (1991) TOGA-TAO: a moored array for real-time measurements in the tropical Pacific Ocean. Bull Am Meteorol Soc 72:339–347

    Google Scholar 

  • Hoerling MP, Kumar A (2002) Atmospheric response patterns associated with tropical forcing. J Climate 15:2184–2203

    Google Scholar 

  • Holland CL, Mitchum GT (2003) Interannual volume variability in the tropical Pacific. J Geophys Res-Oceans 108:3369. doi:10.1029/2003JC001835

  • Huber M, Caballero R (2003) Eocene El Nino: evidence for robust tropical dynamics in the “hothouse”. Science 299:877–881

    Google Scholar 

  • Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys Res Lett 25:3379–3382. doi:10.1029/98GL02562

  • Jin F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Google Scholar 

  • Jin F-F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Google Scholar 

  • Jin F-F, Kimoto M, Wang X (2001) A model of decadal ocean-atmosphere interaction in the North Pacific Basin. Geophys Res Lett 28:1531–1534

    Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Climate 22:615–632

    Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophy Res Lett 29(23):2125. doi:10.1029/2002GL015924

  • Kim H-M, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80

    Google Scholar 

  • Kim S-T, Jin F-F (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dynam 36:1609–1627

    Google Scholar 

  • Koutavas A, Joanidis S (2009) El Nino during the last glacial maximum. Geochim Cosmochim Acta 73:A690–A690

    Google Scholar 

  • Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J Climate 8:2181–2199

    Google Scholar 

  • Kucharski F, Kang I-S, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi:10.1029/2010GL046248

  • Kug J-S, Jin F-F, An S-I (2009) Two-types of El Niño events: cold tongue El Niño and warm pool El Niño. J Climate 22:1499–1515

    Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119

    Google Scholar 

  • Landsea CW, Knaff JA (2000) How much skill was there in forecasting the very strong 1997-98 El Niño? Bull Am Meteorol Soc 81:2107–2119

    Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Lau K-M (1985) Elements of a stochastic-dynamical theory of the long-term variability of the El Niño-Southern Oscillation. J Atmos Sci 42:1552–1558

    Google Scholar 

  • Lee S-K, Wang C, Enfield DB (2010a) On the impact of central Pacific warming events on Atlantic tropical storm activity. Geophys Res Lett 37:L17702. doi:10.1029/2010GL044459

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

  • Lee T, Hobbs WR, Willis JK, Halkides D, Fukumori I, Armstrong EM, Hayashi AK, Liu WT, Patzert W, Wang O (2010b) Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys Res Lett 37:L19704. doi: 10.1029/2010GL044865

  • Lienert F, Fyfe JC, Merryfield WJ (2011) Do climate models capture the tropical influences on North Pacific sea surface temperature variability? J Climate 24:6203–6209

    Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436

    Google Scholar 

  • Liu Z, Vavrus SJ, He F, Wen N, Zhong Y (2006) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Climate 18:4684–4700

    Google Scholar 

  • Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Climate 25:1963–1995

    Google Scholar 

  • Mantua NJ, Battisti DS (1994) Evidence for the delayed oscillator mechanism for ENSO: the “observed” oceanic Kelvin mode in the far western Pacific. J Phys Oceanogr 24:691–699

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Google Scholar 

  • McPhaden MJ (1995) The tropical atmosphere ocean array is completed. Bull Am Meteor Soc 76:739–741

    Google Scholar 

  • McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT (1998) The Tropical Ocean-Global Atmosphere observing system: a decade of progress. J Geophy Res-Oceans 103:14,169–14,240

    Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

  • Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001) Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dynam 17:515–526

    Google Scholar 

  • Meehl GA, Washington WM (1996) El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382:56–60

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A (2007) Global climate projections. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 747–845

    Google Scholar 

  • Méssie M, Chavez F (2011) Global modes of sea surface temperature variability in relation to regional climate indices. J Climate 24:4314–4331

    Google Scholar 

  • Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686

    Google Scholar 

  • Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climatic regime shifts. Geophys Res Lett 26:855–858

    Google Scholar 

  • Mo KC, Higgins RW (1998) Tropical convection and precipitation regimes in the western United States. J Climate 11:2404–2423

    Google Scholar 

  • Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Climate 23:3639–3656

    Google Scholar 

  • Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Climate 12:1199–1220

    Google Scholar 

  • Nakamura H, Lin HG, Yamagata T (1997) Decadal climate variability in the North Pacific in recent decades. Bull Am Meteorol Soc 78:2215–2226

    Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res-Oceans 103:14,262–14,290

    Google Scholar 

  • Newman M, Compo G, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Climate 16:3853–3857

    Google Scholar 

  • Newman M (2007) Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Climate 20:2333–2356

    Google Scholar 

  • Newman M, Shin S-I, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett L14705. doi: 10.1029/2011GL047658

  • Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel climate model. J Climate 22:71–92

    Google Scholar 

  • Penland C, Sardeshmuhk P (1995) The optimal growth of tropical sea surface temperature anomalies. J Climate 8:1999–2024

    Google Scholar 

  • Philander SG (1985) El Niño and La Niña. J Atmos Sci 42:2652–2662

    Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, London, p 289

    Google Scholar 

  • Philander SG, Fedorov A (2003) Is El Niño sporadic or cyclic? Annu Rev Earth Planet Sci 31:579–594

    Google Scholar 

  • Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666

    Google Scholar 

  • Picaut J, Hackert E, Busalacchi AJ, Murtugudde R, Lagerloef GSE (2002) Mechanisms of the 1997–1998 El Niño–La Niña, as inferred from space-based observations. J Geophys Res-Oceans 107. doi: 10.1029/2001JC000850

  • Pierce DW (2001) Distinguishing coupled ocean-atmosphere interactions from background noise in the North Pacific. Prog Oceanogr 49:331–352

    Google Scholar 

  • Power SB, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Climate Dynam 15:319–324

    Google Scholar 

  • Rajagopalan B, Lall U, Cane MA (1997) Anomalous ENSO occurrences: an alternative view. J Climate 10:2351–2357

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmos 108(D14):4407. doi:10.1029/2002JD002670

  • Rodriguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi: 10.1029/2009GL040048

  • Schneider N, Cornuelle BD (2005) The forcing of the Pacific Decadal Oscillation. J Climate 18:4355–4373

    Google Scholar 

  • Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean-atmosphere model. J Atmos Sci 45:549–566

    Google Scholar 

  • Scroxton N, Bonham SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM (2011) Persistent El Niño–Southern Oscillation variation during the Pliocene Epoch. Paleoceanography 26:PA2215. doi:10.1029/2010PA002097

  • Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J Climate 10:521–534

    Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Google Scholar 

  • Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Climate 22:3167–3174

    Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    Google Scholar 

  • Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 24:3057–3060

    Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Climate 14:1697–1701

    Google Scholar 

  • Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Nino-Southern Oscillation through a glacial-interglacial cycle. Science 291:1511–1517

    Google Scholar 

  • van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Climate 20:4316–4340

    Google Scholar 

  • Vecchi GA, Clement A, Soden BJ (2008) Examining the tropical Pacific’s response to global warming. EOS, Trans Am Geophys Union 89:81–83

    Google Scholar 

  • Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley Interdisc Rev: Climate Change 1:260–270. doi: 10.1002/wcc.33

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Climate 16:2668–2675

    Google Scholar 

  • Vimont DJ (2005) The contribution of the interannual ENSO cycle to the spatial pattern of ENSO-like decadal variability. J Climate 18:2080–2092

    Google Scholar 

  • Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J Climate 22:518–534

    Google Scholar 

  • Von der Heydt AS, Nnafie A, Dijkstra HA (2011) Cold tongue/warm pool and ENSO dynamics in the Pliocene. Clim Past Discuss 7:997–1027. doi:10.5194/cpd-7-997-2011

  • von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wang C (2000) On the atmospheric responses to tropical Pacific heating during the mature phase of El Niño. J Atmos Sci 57:3767–3781

    Google Scholar 

  • Wang C (2001) A unified oscillator model for the El Niño-Southern Oscillation. J Climate 14:98–115

    Google Scholar 

  • Wang C (2006) An overlooked feature of tropical climate: Inter-Pacific-Atlantic variability. Geophys Res Lett 33:L12702. doi:10.1029/2006GL026324

  • Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to inter-El Nino variations. J Climate 20:4211–4226

    Google Scholar 

  • Wang C, Weisberg RH (2000) The 1997-98 El Niño evolution relative to previous El Niño events. J Climate 13:488–501

    Google Scholar 

  • Wang C, Kucharski F, Barimalala R, Bracco A (2009) Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: a review of recent findings. Meteorol Z 18:445–454

    Google Scholar 

  • Wang C, Weisberg RH, Virmani JI (1999) Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J Geophys Res 104:5131–5149

    Google Scholar 

  • Wang C, Picaut J (2004) Understanding ENSO physics—a review. In: Wang C, Xie S.-P, Carton J (eds) Earth’s climate: The Ocean-Atmosphere Interaction (pp 21–48). American Geophysical Union

    Google Scholar 

  • Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Niño-like conditions during the Pliocene warm period. Science 309:758–761

    Google Scholar 

  • Watanabe T, Suzuki A, Minobe S, Kawashima T, Kameo K, Minoshima K, Aguilar YM, Wani R, Kawahata H, Sowa K, Nagai T, Kase T (2011) Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471:209–211. doi:10.1038/nature09777

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782

    Google Scholar 

  • Weng H, Wu G, Liu Y, Behera SK, Yamagata T (2011) Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Climate Dynam 36:769–782. doi:10.1007/s00382-009-0658-9

  • White WB, Tourre YM, Barlow M, Dettinger M (2003) A delayed action oscillator shared by biennal, interannual, and decadal signals in the Pacific Basin. J Geophys Res-Oceans 108, 3070. doi:10.1029/2002JC001490

    Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Google Scholar 

  • Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90:7129–7132

    Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kirtman B, Jin F-F (2009) Recent changes in El Niño and its projection under global warming. Nature 461:511–515

    Google Scholar 

  • Yu B, Boer GJ (2004) The role of the western Pacific in decadal variability. Geophys Res Lett 31:L02204. doi:10.1029/2003GL018471

  • Yu J-Y, Kao H-Y (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J Geophys Res 112:D13106. doi:10.1029/2006JD007654

  • Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J Climate 23:2869–2884

    Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278

    Google Scholar 

  • Zhang M, Song H (2006) Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys Res Lett 33:L12701. doi:10.1029/2006GL025942

  • Zhang Q, Guan Y, Yang H (2008) ENSO amplitude change in observation and coupled models. Adv Atmos Sci 25:361–366

    Google Scholar 

  • Zhang W, Jin F-F, Li J, Ren H-L (2011) Contrasting impacts of two-type El Niño over the western north Pacific during boreal autumn. J Meteor Soc Jap 89:563–569

    Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020

    Google Scholar 

  • Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) ENSO at 6 ka and 21 ka from ocean–atmosphere coupled model simulations. Climate Dynam 30:745–762

    Google Scholar 

Download references

Acknowledgments

CW thanks Ms. L. Zhang for plotting Fig. 4.1 and helping modify Fig. 4.2 provided by Dr. M. McPhaden. CD would like to thank Dr. Toby Ault for useful discussions and Mr. Adam Phillips for technical assistance with the figures. We thank Dr. Paul Fiedler and an anonymous reviewer for their comments and suggestions. CW is supported by grants from NOAA’s Climate Program Office, and the base funding of NOAA AOML. NCAR is sponsored by the National Science Foundation (NSF). JYY acknowledges the support from NSF Grant ATM-0925396 and NOAA-MAPP Grant NA11OAR4310102. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunzai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, C., Deser, C., Yu, JY., DiNezio, P., Clement, A. (2017). El Niño and Southern Oscillation (ENSO): A Review. In: Glynn, P., Manzello, D., Enochs, I. (eds) Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7499-4_4

Download citation

Publish with us

Policies and ethics