Skip to main content

Advertisement

Log in

ENSO nonlinearity in a warming climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The El Niño Southern Oscillation (ENSO) is known as the strongest natural inter-annual climate signal, having widespread consequences on the global weather, climate, ecology and even on societies. Understanding ENSO variations in a changing climate is therefore of primordial interest to both the climate community and policy makers. In this study, we focus on the change in ENSO nonlinearity due to climate change. We first analysed high statistical moments of observed Sea Surface Temperatures (SST) timeseries of the tropical Pacific based on the measurement of the tails of their Probability Density Function (PDF). This allows defining relevant metrics for the change in nonlinearity observed over the last century. Based on these metrics, a zonal “see-saw” (oscillation) in nonlinearity patterns is highlighted that is associated with the change in El Niño characteristics observed in recent years. Taking advantage of the IPCC database and the different projection scenarios, it is showed that changes in El Niño statistics (or “flavour”) from a present-day climate to a warmer climate are associated with a significant change in nonlinearity patterns. In particular, in the twentieth century climate, the “conventional” eastern Pacific El Niño relates more to changes in nonlinearity than to changes in mean state whereas the central Pacific El Niño (or Modoki El Niño) is more sensitive to changes in mean state than to changes in nonlinearity. An opposite behaviour is found in a warmer climate, namely the decreasing nonlinearity in the eastern Pacific tends to make El Niño less frequent but more sensitive to mean state, whereas the increasing nonlinearity in the west tends to trigger Central Pacific El Niño more frequently. This suggests that the change in ENSO statistics due to climate change might result from changes in the zonal contrast of nonlinearity characteristics across the tropical Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AchutaRao K, Sperber KR (2002) Simulation of the El Niño Southern Oscillation: results from the Coupled Model Intercomparison Project. Clim Dyn 19:191–209

    Article  Google Scholar 

  • AchutaRao K, Sperber K (2006) ENSO simulations in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15

    Article  Google Scholar 

  • An S-I (2004) Interdecadal changes in the El Niño-La Niña asymmetry. Geophys Res Lett 31:L23210. doi:101029/2004GL021299

    Article  Google Scholar 

  • An S-I (2009) A review of interdecadal changes in the nonlinearity of the El Nino-Southern Oscillation. Theor Appl Climatol 97:29–40

    Article  Google Scholar 

  • An S-I, Jin F–F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • An S-I, Jin F–F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412

    Article  Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • An S-I, Ham Y-G, Kug J-S, Jin F–F, Kang I-S (2005) El Niño-La Niña asymmetry in the coupled model Intercomparison project simulations. J Clim 18:2617–2627

    Article  Google Scholar 

  • Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007

    Article  Google Scholar 

  • Belmadani A, Dewitte B, An S-I (2010) ENSO feedbacks and associated time scales of variability in a multi-model ensemble. J Clim 23:3181–3204

    Article  Google Scholar 

  • Boucharel J, Dewitte B, Garel B, du Penhoat Y (2009) ENSO’s non-stationary and non-Gaussian character: the role of climate shifts. Nonlin Proc Geophys 16:453–473

    Article  Google Scholar 

  • Box G, Jenkins G (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

  • Braconnot P et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3(2):261–277

    Article  Google Scholar 

  • Brown J, Collins M, Tudhope AW, Toniazzo T (2007) Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Clim Dyn. doi:10.1007/s00382-007-0270-9

  • Burgers G, Stephenson DB (1999) The normality of El Niño. Geophys Res Lett 26(8):1027–1039

    Article  Google Scholar 

  • Cherchi A, Masina S, Navarra A (2008) Impact of extreme CO2 levels on tropical climate: a CGCM study. Clim Dynam 31:743–758

    Article  Google Scholar 

  • Choi J, An S-I, Dewitte B, Hsieh WW (2009) Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J Clim 22:6597–6611

    Article  Google Scholar 

  • Clement AC, Seager R, Cane MA (2000) Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15:731–737

    Article  Google Scholar 

  • Collins M et al (2005) El Niño- or La Niña-like climate change? Clim Dyn 24:89–104

    Article  Google Scholar 

  • d’Estampes L (2003) Traitement statistique des processus alpha stables. Mesure de dépendances et identification des AR stables. Thèse de l’Institut National Polytechnique de Toulouse, 125 pp

  • Davey M et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dynam 18:403–420

    Article  Google Scholar 

  • Dewitte B, Yeh S-W, Moon B-K, Cibot C, Terray L (2007) Rectification of the ENSO variability by interdecadal changes in the equatorial background mean state in a CGCM simulation. J Clim 20(10):2002–2021

    Article  Google Scholar 

  • DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892

    Article  Google Scholar 

  • DiNezio PN, Clement AC, Vecchi GA (2010) Reconciling theory, models, and observations of Tropical Pacific climate change. Eos Trans Am Geophys Union (accepted)

  • Efron B (1982) The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, CBMS-NSF Monographs, vol 38, pp 1–92

  • Flügel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140

    Article  Google Scholar 

  • Gnedenko VB, Kolmogorov AN (1954) Limit distributions for sums of random variables. Addison-Wesley

  • Guilderson TP, Schrag DP (1998) Abrupt shift in subsurface temperatures in the tropical pacific associated with changes in El Niño. Science 281(5374):240–243

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in Ocean–Atmosphere general circulation models: progress and challenges. Bull Am Meteor Soc 90:325–340

    Article  Google Scholar 

  • Hannachi A, Stephenson DB, Sperber KR (2003) Probability-based methods for quantifying nonlinearity in the ENSO. Clim Dyn. doi:10.1007/s00382-002-0263-7

  • Jin F–F, Neelin DJ, Ghil M (1994) El Niño on the devil’s staircase: annual subharmonic steps to chaos. Science 264:70–72

    Article  Google Scholar 

  • Jin F–F, An S-I, Timmermann A, Zhang X (2003) Strong El Nino events and nonlinear dynamical heating. Geophys Res Lett 30. doi:10.1029/2002GL016356

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Karnauskas KB, Seager R, Kaplan A, Kushnir Y, Cane MA (2009) Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J Clim 22:4316–4432

    Article  Google Scholar 

  • Koutrouvelis IA (1980) Regression-type estimation of the parameters of stable laws. J Am Stat Assoc 75:N 372

    Google Scholar 

  • Kug J-S, Jin F–F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and Warm Pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F–F, Wittenberg AT (2010) Warm pool and cold tongue El Nino events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005a) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi:10.1029/2005GL022738

  • Larkin NK, Harrison DE (2005b) Global seasonal temperature and precipitation anomalies during El Nino autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2008) El Niño/Southern Oscillation response to global warming. Proc Natl Acad Sci 106:20578–20583

    Article  Google Scholar 

  • Latif M et al (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Lévy P (1924) Théorie des erreurs: Les lois de Gauss et les lois exponentielles. Bull Soc Math France 52:49–95

    Google Scholar 

  • Lin J-L (2007) Interdecadal variability of ENSO in 21 IPCC AR4 coupled CGCMs. Geophys Res Lett 34:L12702

    Article  Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700

    Article  Google Scholar 

  • Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36:394–419

    Article  Google Scholar 

  • Maronna R, Yohai VJ (1978) A bivariate test for the detection of a systematic change in mean. J Am Stat Assoc 73:N363

    Article  Google Scholar 

  • McGregor HV, Gagan MK (2004) Western Pacific coral δ 18O records of anomalous Holocene variability in the El Niño-Southern Oscillation. Geophys Res Lett L11204. doi:10.1029/2004GL019972

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteor Soc 88:1383–1394

    Article  Google Scholar 

  • Monahan AH, Dai A (2004) The spatial and temporal structure of ENSO nonlinearity. J Clim 17:3026–3036

    Article  Google Scholar 

  • Moon B-K, Yeh S-W, Dewitte B, Jhun J-G, Kang I-S, Kirtman BP (2004) Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys Res Lett 31:L03203. doi:10.1029/2003GL018829

  • Philip SY, van Oldenborgh GJ (2009) Significant atmospheric nonlinearities in the ENSO cycle. J Clim 22(14):4014–4028

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the Zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489

    Article  Google Scholar 

  • Randall DA et al (2007) Climate models and their evaluation. In: S Solomon et al. (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 589–662

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late 19th century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteor Soc 89:303–311

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774

    Article  Google Scholar 

  • Schopf PS, Burgman RJ (2006) A simple mechanism for ENSO residuals and asymmetry. J Clim 19:3167–3179

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Timmermann A (1999) Detecting the nonstationary response of ENSO to greenhouse Warming. J Atmos Sci 56:2313–2325

    Article  Google Scholar 

  • Timmermann A, Jin F–F (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett. doi:10.1029/2001GL013369

  • Timmermann A, Latif M, Bacher A, Oberhuber J, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–696

    Article  Google Scholar 

  • Timmermann A, Jin F–F, Abshagen J (2003) A nonlinear theory of El Niño bursting. J Atmos Sci 60:152–165

    Article  Google Scholar 

  • Tsonis AA (2009) Dynamical changes in the ENSO system in the last 11,000 years. Clim Dynam 33:1069–1074

    Article  Google Scholar 

  • Tziperman E, Stone L, Cane MA, Jarosh H (1994) El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science 264:72–74

    Article  Google Scholar 

  • Urban FE, Cole JE, Overpeck JT (2000) Modification of tropical Pacific variability by its mean state inferred from a 155-year coral record. Nature 407:989–993

    Article  Google Scholar 

  • Van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi model study. Ocean Sci 1:81–95

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim v20(17):4316–4340

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature v.441. doi:10.1038/nature04744

  • Weng H, Ashok K, Behera SK, Rao A, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29. doi:10.1007/s00382-007-0234-0

  • White GH (1980) Skewness, kurtosis and extreme values of Northern Hemisphere geopotential heights. Mon Weather Rev 108:1446–1455

    Article  Google Scholar 

  • Yeh S-W, Kirtman BP (2007) ENSO amplitude changes due to climate change projections in different coupled models. J Clim 20:203–217

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F–F (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yeh S-W, Dewitte B, Yim B-Y, Noh Y (2010) Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Clim Dyn (revised)

  • Zebiak SE, Cane MA (1987) A model of El Niño Southern Oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Conseil Régional Midi-Pyrénées under contract No. 06001715. The authors would like to thank Pedro DiNezio for interesting discussions during the AGU of the America conference in Iguazu (Brazil) and two anonymous reviewers for their constructive comments. S.-W. Yeh has been supported from the Korea Meteorological Administration Research and Development Program under Grant RACS_2010-2006. J.-S. Kug is supported by Korea Meteorological Administration Research and Development Program under Grant CATER_2010-2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Boucharel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucharel, J., Dewitte, B., du Penhoat, Y. et al. ENSO nonlinearity in a warming climate. Clim Dyn 37, 2045–2065 (2011). https://doi.org/10.1007/s00382-011-1119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1119-9

Keywords

Navigation