Skip to main content

Advertisement

Log in

Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A prominent characteristic of the reconstructed Northern Hemisphere temperature signal over the last millennium is the transition from the Medieval Climate Anomaly to the Little Ice Age (LIA). Here we report indications for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the LIA. Specifically, we apply a novel statistical test based on horizontal visibility graphs to two ocean sediment August sea-surface temperature records from the Norwegian Sea and the central subpolar basin and find robust indications of time-irreversibility in both records during the LIA onset. Despite a basin-wide cooling trend, we report an anomalous warming in the central subpolar basin during the LIA that is reproduced in ensemble simulations with the climate model of intermediate complexity CLIMBER-3\(\alpha\) as a result of a non-linear regime shift in the subpolar North Atlantic ocean circulation. The identified volcanically triggered non-linear transition in the model simulations provides a plausible explanation for the signatures of time-irreversibility found in the ocean sediment records. Our findings indicate a potential multi-stability of the North Atlantic ocean circulation and its importance for regional climate change on centennial time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar-San Juan B, Guzmán-Vargas L (2013) Earthquake magnitude time series: scaling behavior of visibility networks. Eur Phys J B 86:454. doi:10.1140/epjb/e2013-40762-2

    Article  Google Scholar 

  • Andersen C, Koç N, Jennings A, Andrews JT (2004) Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography. doi:10.1029/2002PA000873

    Google Scholar 

  • Andrews JT, Jennings AE (2014) Multidecadal to millennial marine climate oscillations across the Denmark Strait (66\(^{\circ }\) N) over the last 2000 cal yr BP. Clim Past 10(1):325–343. doi:10.5194/cp-10-325-2014

    Article  Google Scholar 

  • Berner KS, Ko N, Godtliebsen F, Divine D (2011) Holocene climate variability of the norwegian atlantic current during high and low solar insolation forcing. Paleoceanography 26(2):PA2220. doi:10.1029/2010PA002002

    Article  Google Scholar 

  • Born A, Stocker TF, Raible CC, Levermann A (2013) Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models? Clim Dyn 40(11–12):2993–3007. doi:10.1007/s00382-012-1525-7

    Article  Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner KU, Wanner H (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582. doi:10.1126/science.1197175

    Article  Google Scholar 

  • Crowley T (2000) Causes of climate change over the past 1000 years. Science 289(5477):270–277. doi:10.1126/science.289.5477.270

    Article  Google Scholar 

  • Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308(5729):1772–1774. doi:10.1126/science.1109477

    Article  Google Scholar 

  • Donges JF, Donner RV, Rehfeld K, Marwan N, Trauth MH, Kurths J (2011) Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis. Nonlinear Process Geophys 18(5):545–562. doi:10.5194/npg-18-545-2011

    Article  Google Scholar 

  • Donges JF, Donner RV, Trauth MH, Marwan N, Schellnhuber HJ, Kurths J (2011b) Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc Natl Acad Sci USA 108(51):20422–20427. doi:10.1073/pnas.1117052108

    Article  Google Scholar 

  • Donges JF, Donner RV, Kurths J (2013a) Testing time series irreversibility using complex network methods. Europhys Lett 102(1):10004. doi:10.1209/0295-5075/102/10004

    Article  Google Scholar 

  • Donges JF, Heitzig J, Runge J, Schultz HC, Wiedermann M, Zech A, Feldhoff J, Rheinwalt A, Kutza H, Radebach A et al (2013b) Advanced functional network analysis in the geosciences: the pyunicorn package. Geophys Res Abstr 15:3558

    Google Scholar 

  • Donner RV, Donges JF (2012) Visibility graph analysis of geophysical time series: potentials and possible pitfalls. Acta Geophys 60(3):589–623. doi:10.2478/s11600-012-0032-x

    Article  Google Scholar 

  • Donner R, Small M, Donges J, Marwan N, Zou Y, Xiang R, Kurths J (2011) Recurrence-based time series analysis by means of complex network methods. Int J Bifurc Chaos 21(4):1019–1046. doi:10.1142/S0218127411029021

    Article  Google Scholar 

  • Eby M, Weaver AJ, Alexander K, Zickfeld K, Abe-Ouchi A, Cimatoribus AA, Crespin E, Drijfhout SS, Edwards NR, Eliseev AV, Feulner G, Fichefet T, Forest CE, Goosse H, Holden PB, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov II, Monier E, Olsen SM, Pedersen JOP, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider von Deimling T, Shaffer G, Smith RS, Spahni R, Sokolov AP, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zeng N, Zhao F (2013) Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Clim Past 9:1111–1140. doi:10.5194/cp-9-1111-2013

    Article  Google Scholar 

  • Elsner JB, Jagger TH, Fogarty EA (2009) Visibility network of United States hurricanes. Geophys Res Lett 36:L16702. doi:10.1029/2009GL039129

    Article  Google Scholar 

  • Fernández-Donado L, González-Rouco JF, Raible CC, Ammann CM, Barriopedro D, García-Bustamante E, Jungclaus JH, Lorenz SJ, Luterbacher J, Phipps SJ, Servonnat J, Swingedouw D, Tett SFB, Wagner S, Yiou P, Zorita E (2013) Temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past 9:393–421. doi:10.1038/ngeo955

    Article  Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34(5):L05707. doi:10.1029/2006GL027992

    Google Scholar 

  • Gennaretti F, Arseneault D, Nicault A, Perreault L, Bégin Y (2014) Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc Natl Acad Sci USA. doi:10.1073/pnas.1324220111

    Google Scholar 

  • Goosse H, Crespin E, Dubinkina S, Loutre MF, Mann ME, Renssen H, Sallaz-Damaz Y, Shindell D (2012) The role of forcing and internal dynamics in explaining the Medieval Climate Anomaly. Clim Dyn 39(12):2847–2866. doi:10.1007/s00382-012-1297-0

    Article  Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric \(\text{CO}_{2}\) concentration. Geophys Res Lett 32(L12):703. doi:10.1029/2005GL023209

    Google Scholar 

  • Jansen E, Overpeck J, Briffa K, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jungclaus JH, Lohmann K, Zanchettin D (2014) Enhanced 20th century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Clim Past 10:2201–2213. doi:10.5194/cp-10-2201-2014

    Article  Google Scholar 

  • Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479(7374):509–512. doi:10.1038/nature10581

    Article  Google Scholar 

  • Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J (2008) From time series to complex networks: the visibility graph. Proc Natl Acad Sci USA 105(13):4972–4975. doi:10.1073/pnas.0709247105

    Article  Google Scholar 

  • Lacasa L, Luque B, Luque J, Nuno J (2009) The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. Europhys Lett 86(3):30001. doi:10.1209/0295-5075/86/30001

    Article  Google Scholar 

  • Lacasa L, Nuñez A, Roldán É, Parrondo JM, Luque B (2012) Time series irreversibility: a visibility graph approach. Eur Phys J B 85:217. doi:10.1140/epjb/e2012-20809-8

    Article  Google Scholar 

  • Lawrance AJ (1991) Directionality and reversibility in time-series. Int Stat Rev 59(1):67–79. doi:10.2307/1403575

    Article  Google Scholar 

  • Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat Sci Rev 45:85–94. doi:10.1016/j.quascirev.2012.04.025

    Article  Google Scholar 

  • Levermann A, Born A (2007) Bistability of the subpolar gyre in a coarse resolution climate model. Geophys Res Lett 34(L24):605. doi:10.1029/2007GL031732

    Google Scholar 

  • Liu C, Zhou WX, Yuan WK (2010) Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence. Phys A 389(13):2675–2681

    Article  Google Scholar 

  • Luque B, Lacasa L, Ballesteros F, Luque J (2009) Horizontal visibility graphs: exact results for random time series. Phys Rev E 80(4):046103

    Article  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326(5957):1256–60. doi:10.1126/science.1177303

    Article  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco J, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker, TF, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia VB, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

  • Menary MB, Park W, Lohmann K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2011) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38(11–12):2377–2388. doi:10.1007/s00382-011-1172-4

    Google Scholar 

  • Mengel M, Levermann A, Schleussner CF, Born A (2012) Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model. Earth Syst Dyn 3(2):189–197. doi:10.5194/esd-3-189-2012

    Article  Google Scholar 

  • Miettinen A, Divine D, Koç N, Godtliebsen F, Hall IR (2012) Multicentennial variability of the sea surface temperature gradient across the subpolar North Atlantic over the last 2.8 kyr. J Clim 25:4205–4219. doi:10.1175/JCLI-D-11-00581.1

    Article  Google Scholar 

  • Miller GH, Geirsdóttir A, Zhong Y, Larsen DJ, Otto BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, John R (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39(L02):708. doi:10.1029/2011GL050168

    Google Scholar 

  • Moffa-Sánchez P, Hall IR, Barker S, Thornalley DJR, Yashayaev I (2014) Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age. Paleoceanography 28:160–175. doi:10.1002/2013PA002523

    Article  Google Scholar 

  • Montoya M, Griesel A, Levermann A, Mignot J, Hofmann M, Ganopolski A, Rahmstorf S (2005) The Earth system model of intermediate complexity CLIM BER-3\(\alpha\). Part I: Description and performance for present day conditions. Clim Dyn 25:237–263. doi:10.1007/s00382-005-0044-1

    Article  Google Scholar 

  • NCDC/NOAA data base ID Cr 948/2011: 17475. www.ncdc.noaa.gov

  • NCDC/NOAA data base ID Rapid 21-COM: 12905. www.ncdc.noaa.gov

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  • Otterå O, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694. doi:10.1038/ngeo955

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1999) The MOM-3 manual. Technical report 4, NOAA/Geophyical Fluid Dynamics Laboratory. Princeton

  • PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346. doi:10.1038/ngeo1797

    Article  Google Scholar 

  • Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: Model description and performance for present climate. Clim Dyn 16:1–17. doi:10.1007/PL00007919

    Article  Google Scholar 

  • Pierini JO, Lovallo M, Telesca L (2012) Visibility graph analysis of wind speed records measured in central Argentina. Phys A 391(20):5041–5048

    Article  Google Scholar 

  • Rehfeld K, Marwan N, Heitzig J, Kurths J (2011) Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process Geophys 18(3):389–404. doi:10.5194/npg-18-389-2011

    Article  Google Scholar 

  • Robock A (1979) The “Little Ice Age”: northern hemisphere average observations and model calculations. Science 206(4425):1402–1404

    Article  Google Scholar 

  • Schleussner CF, Feulner G (2013) A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age. Clim Past 9(3):1321–1330. doi:10.5194/cp-9-1321-2013

    Article  Google Scholar 

  • Schmidt G, Jungclaus J, Ammann C, Bard E, Braconnot P, Crowley T, Delaygue G, Joos F, Krivova N, Muscheler R et al (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1. 0). Geosci Model Dev 4:33–45. doi:10.5194/gmd-4-33-2011

    Article  Google Scholar 

  • Schulz M, Prange M, Klocker A (2007) Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model. Clim Past 3(1):97–107

    Article  Google Scholar 

  • Sedláček J, Mysak LA (2009) Sensitivity of sea ice to wind-stress and radiative forcing since 1500: a model study of the Little Ice Age and beyond. Clim Dyn 32:817–831. doi:10.1007/s00382-008-0406-6

    Article  Google Scholar 

  • Semenov V, Park W, Latif M (2009) Barents Sea inflow shutdown: a new mechanism for rapid climate changes. Geophys Res Lett. doi:10.1029/2009GL038911

    Google Scholar 

  • Sicre MA, Weckström K, Seidenkrantz MS, Kuijpers A, Benetti M, Masse G, Ezat U, Schmidt S, Bouloubassi I, Olsen J, Khodri M, Mignot J (2014) Labrador current variability over the last 2000 years. Earth Planet Sci Lett 400:26–32. doi:10.1016/j.epsl.2014.05.016

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36(L19):704. doi:10.1029/2009GL040142

    Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov AP, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387. doi:10.1175/JCLI3689.1

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2011) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110(3–4):1005–1027. doi:10.1007/s10584-011-0101-1

    Google Scholar 

  • Swingedouw D, Terray L, Servonnat J, Guiot J (2012) Mechanisms for European summer temperature response to solar forcing over the last millennium. Clim Past 8(5):1487–1495. doi:10.5194/cp-8-1487-2012

    Article  Google Scholar 

  • Telesca L, Lovallo M (2012) Analysis of seismic sequences by using the method of visibility graph. EPL 97(5):50002

    Article  Google Scholar 

  • Telesca L, Lovallo M, Pierini JO (2012) Visibility graph approach to the analysis of ocean tidal records. Chaos Solitons Fractals 45(9):1086–1091

    Article  Google Scholar 

  • Telesca L, Lovallo M, Ramirez-Rojas A, Flores-Marquez L (2013) Investigating the time dynamics of seismicity by using the visibility graph approach: application to seismicity of mexican subduction zone. Phys A 392(24):6571–6577

    Article  Google Scholar 

  • Telesca L, Lovallo M, Ramirez-Rojas A, Flores-Marquez L (2014) Relationship between the frequency magnitude distribution and the visibility graph in the synthetic seismicity generated by a simple stick-slip system with asperities. PloS One 9(8):e106233. doi:10.1371/journal.pone.0106233

    Article  Google Scholar 

  • ter Braak CJ, Juggins S (1993) Weighted averaging partial least squares regression (wa-pls): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270(1):485–502. doi:10.1007/BF00028046

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58:77–94. doi:10.1016/0167-2789(92)90102-S

    Article  Google Scholar 

  • Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324(5923):78–80. doi:10.1126/science.1166349

    Article  Google Scholar 

  • Trouet V, Scourse J, Raible C (2011) North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last millennium: reconciling contradictory proxy records of NAO variability. Glob Planet Change 84:48–55. doi:10.1016/j.gloplacha.2011.10.003

    Google Scholar 

  • Yu Z, Anh V, Eastes R, Wang DL (2012) Multifractal analysis of solar flare indices and their horizontal visibility graphs. Nonlinear Process Geophys 19(6):657–665

    Article  Google Scholar 

  • Zanchettin D, Timmreck C, Graf HF, Rubino A, Lorenz S, Lohmann K, Krüger K, Jungclaus JH (2011) Bi-decadal variability excited in the coupled oceanatmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1–2):419–444. doi:10.1007/s00382-011-1167-1

    Google Scholar 

  • Zhong Y, Miller GH, Otto-Bliesner BL, Holland MM, Bailey DA, Schneider DP, Geirsdottir A, Dyn C (2011) Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice–ocean mechanism. Clim Dyn 37(11–12):2373–2387. doi:10.1007/s00382-010-0967-z

    Article  Google Scholar 

  • Zorita E, von Storch H, Gonzalez-Rouco FJ, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere–ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorol Z 13(4):271–289. doi:10.1127/0941-2948/2004/0013-0271

    Article  Google Scholar 

  • Zou Y, Donner R, Marwan N, Small M, Kurths J (2014) Long-term changes in the north–south asymmetry of solar activity: a nonlinear dynamics characterization using visibility graphs. Nonlinear Process Geophys 21:1113–1126. doi:10.5194/npg-21-1113-2014

    Article  Google Scholar 

  • Zou Y, Small M, Liu Z, Kurths J (2014b) Complex network approach to characterize the statistical features of the sunspot series. New J Phys 16(1):013051

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Georg Feulner for helpful comments and suggestions and two anonymous reviewers for their comments that helped to improve the manuscript. This work was supported by the Deutsche Bundesstiftung Umwelt, the Stordalen Foundation, the Potsdam Institute for Climate Impact Research (PIK), and the German Federal Ministry for Science and Education (Project CoSy-CC\(^2\), Grant No. 01LN1306A, and Project GLUES). Visibility graph analysis was performed using the Python package pyunicorn developed at PIK (Donges et al. 2013b) that is available at http://tocsy.pik-potsdam.de/pyunicorn.php.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-F. Schleussner.

Appendices

Appendix 1: Ensemble simulations of the last millennium with CLIMBER-3\(\alpha\)

In this appendix, we present further details on the ensemble simulations of the last millennium with CLIMBER-3\(\alpha\) as well as results of the time-irreversibility test applied to the model output.

1.1 Model description

CLIMBER-3\(\alpha\) is a model of intermediate complexity (Montoya et al. 2005). It’s oceanic component is based on the GFDL MOM-3 code (Pacanowski and Griffies 1999), with 24 variably spaced vertical levels, a coarse horizontal resolution of 3.75\(^\circ\), a background vertical diffusivity of \(\kappa _h = 0.3 \times 10^{-4}\) m\(^2\) s\(^{-1}\) and an eddy-induced tracer advection with a thickness diffusion coefficient of \(\kappa _{gm} = 250\) m\(^2\) s\(^{-1}\). It contains a coarse resolution statistical-dynamical atmosphere (Petoukhov et al. 2000) and a thermodynamic/dynamic sea-ice component (Fichefet and Maqueda 1997).

Although this model’s coarse resolution and the simplified atmosphere clearly limit its prognostic capabilities at regional scales, CLIMBER-3\(\alpha\) has been found to reproduce large-scale characteristics of the global climate system and has been used in a variety of model intercomparison studies for the last millennium and future projections of the stability of the AMOC (Jansen et al. 2007; Eby et al. 2013; Gregory et al. 2005; Stouffer et al. 2006).

1.2 Ensemble simulations of the last millennium

In the simulations over the last millennium presented here, we applied TSI reconstructions by Steinhilber et al. (2009) and volcanic forcing by Crowley (2000) as well as anthropogenic aerosols and greenhouse gas forcing following the PMIP3 recommendations (Schmidt et al. 2011). The combined TSI is shown in Fig. 7a.

Based on a reconstruction of the North Atlantic Oscillation (NAO) by Trouet et al. (2009) as the leading mode of atmospheric variability in the North Atlantic, we stochastically generated an ensemble of 10 independent representations of wind-stress fields for the last millennium (similar to an approach by Sedláček and Mysak (2009), see Schleussner and Feulner (2013) for further details on the method). For illustration purposes, the NAO record by Trouet et al. (2009) as well as one example reconstruction are depicted in Fig. 7a.

It is important to highlight that the response of the North-Atlantic ocean in the ensemble simulations on multi-decadal to centennial time scales is dominated by the coupled sea-ice–ocean mechanism identified (Schleussner and Feulner 2013), although the NAO reconstruction by Trouet et al. (2011) indicates a shift from a persistent positive NAO to a more oscillatory regime during the MCA–LIA transition. While this persistent positive NAO phase during the MCA is not reproduced by AOGCM simulations of the last millennium (Lehner et al. 2012), a less prominent shift in the atmospheric conditions between MCA and LIA would not affect the main findings presented here.

1.3 Bistability in the subpolar gyre circulation in CLIMBER-3\(\alpha\)

CLIMBER-3\(\alpha\) exhibits a regime shift in the subpolar gyre circulation with respect to the convection strength in its centre (Levermann and Born 2007) that can be triggered by a variety of forcings, e.g. applying a very weak freshwater offset of the order of 15 mSv over the Nordic Sea convection side. Mengel et al. (2012) found that the oceanic response to atmospheric variability in CLIMBER-3\(\alpha\) performs best in reproducing observed levels close to the threshold of the circulation regime. While this multi-stability can also be a result of the coarse resolution and other shortcomings of the specific model, signatures of multi-stability have also been found in a variety of complex coupled models (Born et al. 2013; Schulz et al. 2007).

While the regime shift itself is a robust finding also without additional freshwater budget adjustment (Schleussner and Feulner 2013), the best match with reconstructed data is achieved for a constant freshwater offset of 5 mSv over the convective region in the Nordic Seas (63.75\(^\circ\)–78.75\(^\circ\)N and 11.25\(^\circ\)W–10\(^\circ\)E). This adjustment is within the range of observed natural variability since the 1950s (Curry and Mauritzen 2005). The actual timing of this transition shows a considerable ensemble spread, thus indicating the importance of atmospheric conditions, and is also very sensitive to minor changes in the freshwater budget. It is important to highlight the conceptual nature of the model results presented here, since models of intermediate complexity like CLIMBER-3\(\alpha\) are not suitable to provide realistic transient dynamics on short time scales, but rather indicate possible mechanisms for transition.

Appendix 2: Time series irreversibility analysis for the CLIMBER-3\(\alpha\) simulations

Simulations with CLIMBER-3\(\alpha\) reveal a non-linear regime shift in the subpolar North Atlantic at the MCA–LIA transition that should be detectable using the time series irreversibility analysis technique applied here. Figure 8 summarizes the results of the time series irreversibility analysis for the annual Nordic Seas and subpolar basin area-averaged SST signals. It depicts for each time step the median (the \(p\)-values for 5 out of 10 ensemble members are equal or below this value at this time step) and the 30 % quantile (the \(p\)-values for 3 out of 10 ensemble members are equal or below this value at this time step). Due to the prescribed atmospheric forcing applied, potential signatures of time-irreversibility in the SST signal in the CLIMBER-3\(\alpha\) ensemble simulations may not evolve as they would without it and we can only speculate about the actual effect of this prescription on the highly sensitive analysis methods. This represents a serious limitation and neither the results for individual ensemble members nor the quantile estimates should be directly compared to the results for the individual paleo-record time series presented in Fig. 3. We show the quantile values to give an indication, where the time series reversibility test leads to rejection of the NH in the CLIMBER-3\(\alpha\) ensemble simulations bearing the limitations discussed above in mind.

Fig. 8
figure 8

Time series reversibility test for the CLIMBER-3\(\alpha\) ensemble simulations with an annual sampling time. Left (right) panel SST record averaged over the Nordic Seas (subpolar basin). See Fig. 1 for the region and Fig. 7 for the corresponding time series. The upper panels denote median \(p\) values (\(p_k\): degree-based test, \(p_c\): local clustering coefficient-based test) over the model ensemble and the lower panels give the 30 % quantile

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleussner, CF., Divine, D.V., Donges, J.F. et al. Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age. Clim Dyn 45, 3623–3633 (2015). https://doi.org/10.1007/s00382-015-2561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2561-x

Keywords

Navigation