Advertisement

Climate Dynamics

, Volume 45, Issue 11–12, pp 3623–3633 | Cite as

Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age

  • C.-F. SchleussnerEmail author
  • D. V. Divine
  • J. F. Donges
  • A. Miettinen
  • R. V. Donner
Article

Abstract

A prominent characteristic of the reconstructed Northern Hemisphere temperature signal over the last millennium is the transition from the Medieval Climate Anomaly to the Little Ice Age (LIA). Here we report indications for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the LIA. Specifically, we apply a novel statistical test based on horizontal visibility graphs to two ocean sediment August sea-surface temperature records from the Norwegian Sea and the central subpolar basin and find robust indications of time-irreversibility in both records during the LIA onset. Despite a basin-wide cooling trend, we report an anomalous warming in the central subpolar basin during the LIA that is reproduced in ensemble simulations with the climate model of intermediate complexity CLIMBER-3\(\alpha\) as a result of a non-linear regime shift in the subpolar North Atlantic ocean circulation. The identified volcanically triggered non-linear transition in the model simulations provides a plausible explanation for the signatures of time-irreversibility found in the ocean sediment records. Our findings indicate a potential multi-stability of the North Atlantic ocean circulation and its importance for regional climate change on centennial time scales.

Keywords

Little Ice Age Volcanic forcing Last millennium  Horizontal visibility graphs Time series irreversibility  Marine sediments Tipping element 

Notes

Acknowledgments

The authors wish to thank Georg Feulner for helpful comments and suggestions and two anonymous reviewers for their comments that helped to improve the manuscript. This work was supported by the Deutsche Bundesstiftung Umwelt, the Stordalen Foundation, the Potsdam Institute for Climate Impact Research (PIK), and the German Federal Ministry for Science and Education (Project CoSy-CC\(^2\), Grant No. 01LN1306A, and Project GLUES). Visibility graph analysis was performed using the Python package pyunicorn developed at PIK (Donges et al. 2013b) that is available at http://tocsy.pik-potsdam.de/pyunicorn.php.

References

  1. Aguilar-San Juan B, Guzmán-Vargas L (2013) Earthquake magnitude time series: scaling behavior of visibility networks. Eur Phys J B 86:454. doi: 10.1140/epjb/e2013-40762-2 CrossRefGoogle Scholar
  2. Andersen C, Koç N, Jennings A, Andrews JT (2004) Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography. doi: 10.1029/2002PA000873 Google Scholar
  3. Andrews JT, Jennings AE (2014) Multidecadal to millennial marine climate oscillations across the Denmark Strait (66\(^{\circ }\) N) over the last 2000 cal yr BP. Clim Past 10(1):325–343. doi: 10.5194/cp-10-325-2014 CrossRefGoogle Scholar
  4. Berner KS, Ko N, Godtliebsen F, Divine D (2011) Holocene climate variability of the norwegian atlantic current during high and low solar insolation forcing. Paleoceanography 26(2):PA2220. doi: 10.1029/2010PA002002 CrossRefGoogle Scholar
  5. Born A, Stocker TF, Raible CC, Levermann A (2013) Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models? Clim Dyn 40(11–12):2993–3007. doi: 10.1007/s00382-012-1525-7 CrossRefGoogle Scholar
  6. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner KU, Wanner H (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582. doi: 10.1126/science.1197175 CrossRefGoogle Scholar
  7. Crowley T (2000) Causes of climate change over the past 1000 years. Science 289(5477):270–277. doi: 10.1126/science.289.5477.270 CrossRefGoogle Scholar
  8. Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308(5729):1772–1774. doi: 10.1126/science.1109477 CrossRefGoogle Scholar
  9. Donges JF, Donner RV, Rehfeld K, Marwan N, Trauth MH, Kurths J (2011) Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis. Nonlinear Process Geophys 18(5):545–562. doi: 10.5194/npg-18-545-2011 CrossRefGoogle Scholar
  10. Donges JF, Donner RV, Trauth MH, Marwan N, Schellnhuber HJ, Kurths J (2011b) Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc Natl Acad Sci USA 108(51):20422–20427. doi: 10.1073/pnas.1117052108 CrossRefGoogle Scholar
  11. Donges JF, Donner RV, Kurths J (2013a) Testing time series irreversibility using complex network methods. Europhys Lett 102(1):10004. doi: 10.1209/0295-5075/102/10004 CrossRefGoogle Scholar
  12. Donges JF, Heitzig J, Runge J, Schultz HC, Wiedermann M, Zech A, Feldhoff J, Rheinwalt A, Kutza H, Radebach A et al (2013b) Advanced functional network analysis in the geosciences: the pyunicorn package. Geophys Res Abstr 15:3558Google Scholar
  13. Donner RV, Donges JF (2012) Visibility graph analysis of geophysical time series: potentials and possible pitfalls. Acta Geophys 60(3):589–623. doi: 10.2478/s11600-012-0032-x CrossRefGoogle Scholar
  14. Donner R, Small M, Donges J, Marwan N, Zou Y, Xiang R, Kurths J (2011) Recurrence-based time series analysis by means of complex network methods. Int J Bifurc Chaos 21(4):1019–1046. doi: 10.1142/S0218127411029021 CrossRefGoogle Scholar
  15. Eby M, Weaver AJ, Alexander K, Zickfeld K, Abe-Ouchi A, Cimatoribus AA, Crespin E, Drijfhout SS, Edwards NR, Eliseev AV, Feulner G, Fichefet T, Forest CE, Goosse H, Holden PB, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov II, Monier E, Olsen SM, Pedersen JOP, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider von Deimling T, Shaffer G, Smith RS, Spahni R, Sokolov AP, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zeng N, Zhao F (2013) Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Clim Past 9:1111–1140. doi: 10.5194/cp-9-1111-2013 CrossRefGoogle Scholar
  16. Elsner JB, Jagger TH, Fogarty EA (2009) Visibility network of United States hurricanes. Geophys Res Lett 36:L16702. doi: 10.1029/2009GL039129 CrossRefGoogle Scholar
  17. Fernández-Donado L, González-Rouco JF, Raible CC, Ammann CM, Barriopedro D, García-Bustamante E, Jungclaus JH, Lorenz SJ, Luterbacher J, Phipps SJ, Servonnat J, Swingedouw D, Tett SFB, Wagner S, Yiou P, Zorita E (2013) Temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past 9:393–421. doi: 10.1038/ngeo955 CrossRefGoogle Scholar
  18. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646CrossRefGoogle Scholar
  19. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34(5):L05707. doi: 10.1029/2006GL027992 Google Scholar
  20. Gennaretti F, Arseneault D, Nicault A, Perreault L, Bégin Y (2014) Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1324220111 Google Scholar
  21. Goosse H, Crespin E, Dubinkina S, Loutre MF, Mann ME, Renssen H, Sallaz-Damaz Y, Shindell D (2012) The role of forcing and internal dynamics in explaining the Medieval Climate Anomaly. Clim Dyn 39(12):2847–2866. doi: 10.1007/s00382-012-1297-0 CrossRefGoogle Scholar
  22. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric \(\text{CO}_{2}\) concentration. Geophys Res Lett 32(L12):703. doi: 10.1029/2005GL023209 Google Scholar
  23. Jansen E, Overpeck J, Briffa K, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  24. Jungclaus JH, Lohmann K, Zanchettin D (2014) Enhanced 20th century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Clim Past 10:2201–2213. doi: 10.5194/cp-10-2201-2014 CrossRefGoogle Scholar
  25. Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479(7374):509–512. doi: 10.1038/nature10581 CrossRefGoogle Scholar
  26. Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J (2008) From time series to complex networks: the visibility graph. Proc Natl Acad Sci USA 105(13):4972–4975. doi: 10.1073/pnas.0709247105 CrossRefGoogle Scholar
  27. Lacasa L, Luque B, Luque J, Nuno J (2009) The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. Europhys Lett 86(3):30001. doi: 10.1209/0295-5075/86/30001 CrossRefGoogle Scholar
  28. Lacasa L, Nuñez A, Roldán É, Parrondo JM, Luque B (2012) Time series irreversibility: a visibility graph approach. Eur Phys J B 85:217. doi: 10.1140/epjb/e2012-20809-8 CrossRefGoogle Scholar
  29. Lawrance AJ (1991) Directionality and reversibility in time-series. Int Stat Rev 59(1):67–79. doi: 10.2307/1403575 CrossRefGoogle Scholar
  30. Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat Sci Rev 45:85–94. doi: 10.1016/j.quascirev.2012.04.025 CrossRefGoogle Scholar
  31. Levermann A, Born A (2007) Bistability of the subpolar gyre in a coarse resolution climate model. Geophys Res Lett 34(L24):605. doi: 10.1029/2007GL031732 Google Scholar
  32. Liu C, Zhou WX, Yuan WK (2010) Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence. Phys A 389(13):2675–2681CrossRefGoogle Scholar
  33. Luque B, Lacasa L, Ballesteros F, Luque J (2009) Horizontal visibility graphs: exact results for random time series. Phys Rev E 80(4):046103CrossRefGoogle Scholar
  34. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326(5957):1256–60. doi: 10.1126/science.1177303 CrossRefGoogle Scholar
  35. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco J, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker, TF, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia VB, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar
  36. Menary MB, Park W, Lohmann K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2011) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38(11–12):2377–2388. doi: 10.1007/s00382-011-1172-4 Google Scholar
  37. Mengel M, Levermann A, Schleussner CF, Born A (2012) Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model. Earth Syst Dyn 3(2):189–197. doi: 10.5194/esd-3-189-2012 CrossRefGoogle Scholar
  38. Miettinen A, Divine D, Koç N, Godtliebsen F, Hall IR (2012) Multicentennial variability of the sea surface temperature gradient across the subpolar North Atlantic over the last 2.8 kyr. J Clim 25:4205–4219. doi: 10.1175/JCLI-D-11-00581.1 CrossRefGoogle Scholar
  39. Miller GH, Geirsdóttir A, Zhong Y, Larsen DJ, Otto BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, John R (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39(L02):708. doi: 10.1029/2011GL050168 Google Scholar
  40. Moffa-Sánchez P, Hall IR, Barker S, Thornalley DJR, Yashayaev I (2014) Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age. Paleoceanography 28:160–175. doi: 10.1002/2013PA002523 CrossRefGoogle Scholar
  41. Montoya M, Griesel A, Levermann A, Mignot J, Hofmann M, Ganopolski A, Rahmstorf S (2005) The Earth system model of intermediate complexity CLIM BER-3\(\alpha\). Part I: Description and performance for present day conditions. Clim Dyn 25:237–263. doi: 10.1007/s00382-005-0044-1 CrossRefGoogle Scholar
  42. NCDC/NOAA data base ID Cr 948/2011: 17475. www.ncdc.noaa.gov
  43. NCDC/NOAA data base ID Rapid 21-COM: 12905. www.ncdc.noaa.gov
  44. Newman MEJ (2010) Networks: an introduction. Oxford University Press, OxfordCrossRefGoogle Scholar
  45. Otterå O, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694. doi: 10.1038/ngeo955 CrossRefGoogle Scholar
  46. Pacanowski RC, Griffies SM (1999) The MOM-3 manual. Technical report 4, NOAA/Geophyical Fluid Dynamics Laboratory. PrincetonGoogle Scholar
  47. PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346. doi: 10.1038/ngeo1797 CrossRefGoogle Scholar
  48. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: Model description and performance for present climate. Clim Dyn 16:1–17. doi: 10.1007/PL00007919 CrossRefGoogle Scholar
  49. Pierini JO, Lovallo M, Telesca L (2012) Visibility graph analysis of wind speed records measured in central Argentina. Phys A 391(20):5041–5048CrossRefGoogle Scholar
  50. Rehfeld K, Marwan N, Heitzig J, Kurths J (2011) Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process Geophys 18(3):389–404. doi: 10.5194/npg-18-389-2011 CrossRefGoogle Scholar
  51. Robock A (1979) The “Little Ice Age”: northern hemisphere average observations and model calculations. Science 206(4425):1402–1404CrossRefGoogle Scholar
  52. Schleussner CF, Feulner G (2013) A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age. Clim Past 9(3):1321–1330. doi: 10.5194/cp-9-1321-2013 CrossRefGoogle Scholar
  53. Schmidt G, Jungclaus J, Ammann C, Bard E, Braconnot P, Crowley T, Delaygue G, Joos F, Krivova N, Muscheler R et al (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1. 0). Geosci Model Dev 4:33–45. doi: 10.5194/gmd-4-33-2011 CrossRefGoogle Scholar
  54. Schulz M, Prange M, Klocker A (2007) Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model. Clim Past 3(1):97–107CrossRefGoogle Scholar
  55. Sedláček J, Mysak LA (2009) Sensitivity of sea ice to wind-stress and radiative forcing since 1500: a model study of the Little Ice Age and beyond. Clim Dyn 32:817–831. doi: 10.1007/s00382-008-0406-6 CrossRefGoogle Scholar
  56. Semenov V, Park W, Latif M (2009) Barents Sea inflow shutdown: a new mechanism for rapid climate changes. Geophys Res Lett. doi: 10.1029/2009GL038911 Google Scholar
  57. Sicre MA, Weckström K, Seidenkrantz MS, Kuijpers A, Benetti M, Masse G, Ezat U, Schmidt S, Bouloubassi I, Olsen J, Khodri M, Mignot J (2014) Labrador current variability over the last 2000 years. Earth Planet Sci Lett 400:26–32. doi: 10.1016/j.epsl.2014.05.016 CrossRefGoogle Scholar
  58. Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36(L19):704. doi: 10.1029/2009GL040142 Google Scholar
  59. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov AP, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387. doi: 10.1175/JCLI3689.1 CrossRefGoogle Scholar
  60. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2011) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110(3–4):1005–1027. doi: 10.1007/s10584-011-0101-1 Google Scholar
  61. Swingedouw D, Terray L, Servonnat J, Guiot J (2012) Mechanisms for European summer temperature response to solar forcing over the last millennium. Clim Past 8(5):1487–1495. doi: 10.5194/cp-8-1487-2012 CrossRefGoogle Scholar
  62. Telesca L, Lovallo M (2012) Analysis of seismic sequences by using the method of visibility graph. EPL 97(5):50002CrossRefGoogle Scholar
  63. Telesca L, Lovallo M, Pierini JO (2012) Visibility graph approach to the analysis of ocean tidal records. Chaos Solitons Fractals 45(9):1086–1091CrossRefGoogle Scholar
  64. Telesca L, Lovallo M, Ramirez-Rojas A, Flores-Marquez L (2013) Investigating the time dynamics of seismicity by using the visibility graph approach: application to seismicity of mexican subduction zone. Phys A 392(24):6571–6577CrossRefGoogle Scholar
  65. Telesca L, Lovallo M, Ramirez-Rojas A, Flores-Marquez L (2014) Relationship between the frequency magnitude distribution and the visibility graph in the synthetic seismicity generated by a simple stick-slip system with asperities. PloS One 9(8):e106233. doi: 10.1371/journal.pone.0106233 CrossRefGoogle Scholar
  66. ter Braak CJ, Juggins S (1993) Weighted averaging partial least squares regression (wa-pls): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270(1):485–502. doi: 10.1007/BF00028046 CrossRefGoogle Scholar
  67. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58:77–94. doi: 10.1016/0167-2789(92)90102-S CrossRefGoogle Scholar
  68. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324(5923):78–80. doi: 10.1126/science.1166349 CrossRefGoogle Scholar
  69. Trouet V, Scourse J, Raible C (2011) North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last millennium: reconciling contradictory proxy records of NAO variability. Glob Planet Change 84:48–55. doi: 10.1016/j.gloplacha.2011.10.003 Google Scholar
  70. Yu Z, Anh V, Eastes R, Wang DL (2012) Multifractal analysis of solar flare indices and their horizontal visibility graphs. Nonlinear Process Geophys 19(6):657–665CrossRefGoogle Scholar
  71. Zanchettin D, Timmreck C, Graf HF, Rubino A, Lorenz S, Lohmann K, Krüger K, Jungclaus JH (2011) Bi-decadal variability excited in the coupled oceanatmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1–2):419–444. doi: 10.1007/s00382-011-1167-1 Google Scholar
  72. Zhong Y, Miller GH, Otto-Bliesner BL, Holland MM, Bailey DA, Schneider DP, Geirsdottir A, Dyn C (2011) Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice–ocean mechanism. Clim Dyn 37(11–12):2373–2387. doi: 10.1007/s00382-010-0967-z CrossRefGoogle Scholar
  73. Zorita E, von Storch H, Gonzalez-Rouco FJ, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere–ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorol Z 13(4):271–289. doi: 10.1127/0941-2948/2004/0013-0271 CrossRefGoogle Scholar
  74. Zou Y, Donner R, Marwan N, Small M, Kurths J (2014) Long-term changes in the north–south asymmetry of solar activity: a nonlinear dynamics characterization using visibility graphs. Nonlinear Process Geophys 21:1113–1126. doi: 10.5194/npg-21-1113-2014 CrossRefGoogle Scholar
  75. Zou Y, Small M, Liu Z, Kurths J (2014b) Complex network approach to characterize the statistical features of the sunspot series. New J Phys 16(1):013051CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C.-F. Schleussner
    • 1
    • 2
    Email author
  • D. V. Divine
    • 3
    • 4
  • J. F. Donges
    • 2
    • 5
  • A. Miettinen
    • 3
  • R. V. Donner
    • 2
  1. 1.Climate AnalyticsBerlinGermany
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  3. 3.Norwegian Polar InstituteFram CentreTromsøNorway
  4. 4.Department of Mathematics and StatisticsUniversity of TromsøTromsøNorway
  5. 5.Stockholm Resilience CentreStockholm UniversityStockholmSweden

Personalised recommendations