Skip to main content
Log in

Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Atlantic subpolar gyre (SPG) is one of the main drivers of decadal climate variability in the North Atlantic. Here we analyze its dynamics in pre-industrial control simulations of 19 different comprehensive coupled climate models. The analysis is based on a recently proposed description of the SPG dynamics that found the circulation to be potentially bistable due to a positive feedback mechanism including salt transport and enhanced deep convection in the SPG center. We employ a statistical method to identify multiple equilibria in time series that are subject to strong noise and analyze composite fields to assess whether the bistability results from the hypothesized feedback mechanism. Because noise dominates the time series in most models, multiple circulation modes can unambiguously be detected in only six models. Four of these six models confirm that the intensification is caused by the positive feedback mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bacon S (1997) Circulation and fluxes in the North Atlantic between Greenland and Ireland. J Phys Oceanogr 27:1420–1435

    Article  Google Scholar 

  • Böning C, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01

    Article  Google Scholar 

  • Born A, Kageyama M, Nisancioglu KH (2010a) Warm Nordic Seas delayed glacial inception in Scandinavia. Clim Past 6:817–826

    Article  Google Scholar 

  • Born A, Levermann A (2010) The 8.2 ka event: Abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochem Geophys Geosyst 11:Q06011

    Article  Google Scholar 

  • Born A, Mignot J (2011) Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator. Clim Dyn. 39:461–474

    Google Scholar 

  • Born A, Nisancioglu KH, Braconnot P (2010b) Sea ice induced changes in ocean circulation during the Eemian. Clim Dyn 35(7):1361

    Article  Google Scholar 

  • Born A, Nisancioglu KH, Risebrobakken B (2011) Late Eemian warming in the Nordic Seas as seen in proxy data and climate models. Paleoceanography 26:PA2207

    Article  Google Scholar 

  • Clarke RA (1984) Transport through the cape farewell-flemish cap section. Rapp PV Reun Cons Int Explor Mer 185:120–130

    Google Scholar 

  • Curry R, McCartney M, Joyce T (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391:575–577

    Article  Google Scholar 

  • Danabasoglu G, Bates S, Briegleb BP, Jayne SR, Jochum M, Large WG, Peacock S, Yeager SG (2012) The CCSM4 Ocean component. J Clim 25:1361–1389

    Article  Google Scholar 

  • Danabasoglu G, Large WG, Briegleb BP (2010) Climate impacts of parameterized Nordic Sea overflows. J Geophys Res 115:C11005

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled Ocean-atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Deshayes J, Straneo F, Spall MA (2009) Mechanisms of variability in a convective basin. J Mar Res 67(3):273–303

    Article  Google Scholar 

  • Diansky NA, Volodin EM (2002) Simulation of present-day climate with a coupled Atmosphere-ocean general circulation model. Izv Atmos Ocean Phys (Engl Transl) 38(6):732–747

    Google Scholar 

  • Ditlevsen PD (1999) Observation of α-stable noise induced millennial climate changes from an ice-core record. Geophys Res Lett 26(10):1441–1444

    Article  Google Scholar 

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: Oceanic response to the North Atlantic oscillation (1865–1997). J Clim 14:676–691

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamstø NG, Sorteberg A (2003) Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21(1):27–51

    Article  Google Scholar 

  • Gardiner CW (1985) Handbook of stochastic methods. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Gent PR, Danabasoglu G, Donner L, Holland M, Hunke E, Jayne S, Lawrence D, Neale R, Rasch P, Vertenstein M, Worley P, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier, MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 Climate system model. Technical report, Aspendale: CSIRO Atmospheric Research. (CSIRO Atmospheric Research technical paper; no. 60)

  • Greatbatch RJ, Fanning AF, Goulding AD, Levitus S (1991) A diagnosis of interpentadal circulation changes in the North Atlantic. J Geophys Res 96:22,009–22,023

    Google Scholar 

  • Häkkinen S, Rhines PB (2009) Shifting surface currents in the northern North Atlantic Ocean. J Geophys Res 114:C04005

    Article  Google Scholar 

  • Häkkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic Multidecadal Ocean variability. Science 334:655–659

    Article  Google Scholar 

  • Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844

    Article  Google Scholar 

  • Holliday NP, Hughes SL, Bacon S, Beszczynska-Möller A, Hansen B, Lavín A, Loeng H, Mork KA, Østerhus S, Sherwin T, Walczowski W (2008) Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys Res Lett 35:L03614

    Article  Google Scholar 

  • Iovino D, Straneo F, Spall M (2008) The effect of a sill on dense water formation in a marginal sea. J Mar Res 66:325–345

    Article  Google Scholar 

  • Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo J-J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706

    Article  Google Scholar 

  • Kwasniok F, Lohmann G (2009) Deriving dynamical models from paleoclimatic records: application to glacial millennial-scale climate variability. Phys Rev E 80:066104

    Article  Google Scholar 

  • Legutke S, Voss R (1999) ECHO-G, the Hamburg atmosphere-ocean coupled circulation model. Technical report, DKRZ technical report 18, DKRZ, Hamburg

  • Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse-resolution model. Geophys Res Lett 34:L24605

    Article  Google Scholar 

  • Lilly JM, Rhines PB, Visbeck M, Davis R, Lazier JRN, Schott F, Farmer D (1999) Observing deep convection in the labrador sea during winter 1994/95. J Phys Oceanogr 29:2065–2098

    Article  Google Scholar 

  • Livina VN, Ditlevsen P, Lenton TM (2012) An independent test of methods of detecting system states and bifurcations in time-series data. Phys A 391:485–496

    Article  Google Scholar 

  • Livina VN, Kwasniok F, Lenton TM (2010) Potential analysis reveals changing number of climate states during the last 60 kyr. Clim Past 6:77–82

    Article  Google Scholar 

  • Livina VN, Kwasniok F, Lohmann G, Kantelhardt JW, Lenton TM (2011) Changing climate states and stability: from Pliocene to present. Clim Dyn 37:2437–2453

    Article  Google Scholar 

  • Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285

    Article  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260

    Article  Google Scholar 

  • Marti O, Braconnot P, Dufresne J-L, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols M-A, Friedlingstein P, Goosse H, Grandpeix J-Y, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26

    Article  Google Scholar 

  • McFarlane NA, Scinocca JF, Lazare M, Harvey R, Verseghy D, Li J (2011). The CCCma third generation atmospheric general circulation model. Technical report, CCCma internal report

  • Mellor G, Mechoso C, Keto E (1982) A diagnostic calculation of the general circulation of the Atlantic Ocean. Deep Sea Res 29:1171–1192

    Article  Google Scholar 

  • Mengel M, Levermann A, Schleussner C, Born A (2012) Enhanced subpolar-gyre variability through baroclinic threshold in the Atlantic. Earth Syst Dyn Discuss 3. doi:10.5194/esdd-3-259-2012

  • Montoya M, Born A, Levermann A (2011) Reversed North Atlantic gyre dynamics in glacial climate. Clim Dyn 36(5–6):1107–1118

    Article  Google Scholar 

  • Myers PG, Fanning AF, Weaver AJ (1996) JEBAR, bottom pressure torque, and Gulf stream separation. J Phys Ocean 26:671–683

    Article  Google Scholar 

  • Penduff T, Barnier B, de Verdière AC (2000) Self-adapting open boundaries for a sigma coordinate model of the eastern North Atlantic. J Geophys Res 105:11,279–11,298

    Article  Google Scholar 

  • Prater MD (2002) Eddies in the labrador sea as observed by profiling RAFOS floats and remote sensing. J Phys Oceanogr 32:411–427

    Article  Google Scholar 

  • Reid JL (1994) On the total geostrophic circulation of the North Atlantic Ocean: flow patterns, tracers, and transports. Prog Oceanogr 33:1–92

    Google Scholar 

  • Renold M, Raible CC, Yoshimori M, Stocker TF (2010) Simulated resumption of the North Atlantic meridional overturning circulation—slow basin-wide advection and abrupt local convection. Quatern Sci Rev 29:101–112

    Article  Google Scholar 

  • Salas-Mélia D, Chauvin F, Déqué M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. Technical report

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726

    Article  Google Scholar 

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Genio AD, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz JP, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present day atmospheric simulations using GISS ModelE: comparison to in-situ, satellite and reanalysis data. J Clim 19:153–192

    Article  Google Scholar 

  • Spall MA (2004) Boundary currents and watermass transformation in marginal seas. J Phys Oceanogr 34:1197–1213

    Article  Google Scholar 

  • Spall MA (2008) Low-frequency interaction between horizontal and overturning gyres in the ocean. Geophys Res Lett 35:L18614

    Article  Google Scholar 

  • Straneo F (2006a) Heat and freshwater transport through the central labrador sea. J Phys Oceanogr 36:606–628

    Article  Google Scholar 

  • Straneo F (2006b) On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J Phys Oceanogr 36:1822–1840

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28:291–305

    Article  Google Scholar 

  • Thornalley DJR, Elderfield H, McCave IN (2009) Holocene oscillations in temperature and salinity of the surface North Atlantic. Nature 457:711–714

    Article  Google Scholar 

  • Treguier AM, Theetten S, Chassignet EP, Penduff T, Smith R, Talley L, Beismann JO, Böning C (2005) The North Atlantic subpolar gyre in four high-resolution models. J Phys Oceanogr 35:757–774

    Article  Google Scholar 

  • Yongqiang Y, Xuehong Z, Yufu G (2004) Global coupled ocean- atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455

    Article  Google Scholar 

  • Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121

    Article  Google Scholar 

  • Yukimoto S, Noda A, Kitoh A, Hosaka M, Yoshimura H, Uchiyama T, Shibata K, Arakawa O, Kusunoki S (2006) Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). J Meteor Soc Jpn 84:333–363

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. We are grateful to Dr. Johann Jungclaus and to Dr. Jonathan Gregory for providing data of MPI-ESM and HadCM3, respectively. Simulations with CCSM4 were carried out on the ’bluefire’ system of the Computational and Informations Systems Laboratory (CISL). Simulations with IPSL CM4 hires were funded by the EC-FP6 project ‘ENSEMBLES’. Additional compute time was provided by the Swiss National Supercomputing Centre (CSCS). A. B. is supported by the European Commission under the Marie Curie Intra-European Fellowship ECLIPS (PIEF-GA-2011-300544) and the ‘National Centre for Excellence in Research: Climate’ of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Born.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Born, A., Stocker, T.F., Raible, C.C. et al. Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models?. Clim Dyn 40, 2993–3007 (2013). https://doi.org/10.1007/s00382-012-1525-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1525-7

Keywords

Navigation