Skip to main content

Advertisement

Log in

Evaluation of observed and simulated teleconnections over the Euro-Atlantic region on the basis of partial least squares regression

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

An interesting topic in climate research is to determine the variability of teleconnection patterns under warming conditions. The North Atlantic Oscillation (NAO), the East Atlantic, the East Atlantic-West Russian and the Scandinavian (SCAND) patterns are the most important teleconnection patterns affecting Europe. Results associated with traditional methodologies for capturing these patterns, such as conventional and rotated empirical orthogonal function analysis, are difficult to intercompare when using different datasets. Therefore, we employed the method of partial least squares (PLS) regression to find a plausible representation of the teleconnections using the standard set of teleconnection patterns defined by National Oceanic and Atmospheric Administration’s Climate Prediction Center as a reference. The variability and trend of the teleconnection indices and patterns over the twentieth and twenty-first centuries were investigated for 20C3M and SRES A1B experiments from the third phase of the Coupled Model Intercomparison Project (CMIP) and compared with the twentieth-century reanalysis data. The results of this study show a positive trend for the NAO and a negative trend for the SCAND under a future climate scenario. With this study, we were able to extract consistent teleconnection patterns across different models, demonstrating the usefulness of the PLS regression in evaluating models and establishing the basis for future work using the fifth phase of CMIP data to assess atmospheric circulation trends and causes of regional climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip Rev Comput Stat 2(1):97–106

    Article  Google Scholar 

  • Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26(18):7117–7135

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126

    Article  Google Scholar 

  • Bladè I, Fortuny D, van Oldenborgh GJ, Liebmann B (2012) The summer North Atlantic Oscillation in CMIP3 models and related uncertainties in projected summer drying in Europe. J Geophys Res Atmos 117(D16):D16104. doi:10.1029/2012JD017816

    Article  Google Scholar 

  • Casado MJ, Pastor MA (2012) Use of variability modes to evaluate AR4 climate models over the Euro-Atlantic region. Clim Dyn 38(1–2):225–237

    Article  Google Scholar 

  • Cattiaux J, Cassou C (2013) Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys Res Lett 40(14):3682–3687

    Article  Google Scholar 

  • Chronis T, Raitsos DE, Kassis D, Sarantopoulos A (2011) The summer North Atlantic oscillation influence on the Eastern Mediterranean. J Clim 24(21):5584–5596

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143

    Article  Google Scholar 

  • Comas-Bru L, McDermott F (2014) Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship. Quart J R Meteorol Soc 140(679):354–363

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Bronnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Quart J R Meteorol Soc 137(654):1–28

    Article  Google Scholar 

  • Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398(6730):799–802

    Article  Google Scholar 

  • de Jong S (1993) SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst 18(3):251–263

    Article  Google Scholar 

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27(6):2271–2296

    Article  Google Scholar 

  • Diansky NA, Volodin EM (2002) Simulation of present-day climate with a coupled atmosphere-ocean general circulation model. Izvestiya Atmos Ocean Phys 38(6):732–747

    Google Scholar 

  • Dong B, Sutton RT, Woollings T (2011) Changes of interannual NAO variability in response to greenhouse gases forcing. Clim Dyn 37(7–8):1621–1641

    Article  Google Scholar 

  • Errasti I, Ezcurra A, Saenz J, Ibarra-Berastegi G (2011) Validation of IPCC AR4 models over the Iberian Peninsula. Theor Appl Climatol 103(1–2):61–79

    Article  Google Scholar 

  • Faller AJ (1981) An average correlation coefficient. J Appl Meteorol 20(2):203–205

    Article  Google Scholar 

  • Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian Centre for climate modelling and analysis global coupled model and its climate. Clim Dyn 16(6):451–467

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamsto NG, Sorteberg A (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21(1):27–51

    Article  Google Scholar 

  • Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys Res Lett 26(11):1601–1604

    Article  Google Scholar 

  • Garthwaite PH (1994) An interpretation of partial least-squares. J Am Stat Assoc 89(425):122–127

    Article  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  Google Scholar 

  • Gillett NA, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40(6):1189–1193

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168

    Article  Google Scholar 

  • Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 climate system model. CSIRO Atmospheric Research Technical Paper No. 60:130

  • Handorf D, Dethloff K (2012) How well do state-of-the-art atmosphere–ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus A Dyn Meteorol Oceanogr 64:1–27. doi:10.3402/tellusa.v64i0.19777

  • Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152

    Article  Google Scholar 

  • Hannachi A, Unkel S, Trendafilov NT, Jolliffe IT (2009) Independent component analysis of climate data: a new look at EOF rotation. J Clim 22(11):2797–2812

    Article  Google Scholar 

  • Hannachi A, Barnes EA, Woollings T (2013) Behaviour of the winter North Atlantic eddy-driven jet stream in the CMIP3 integrations. Clim Dyn 41(3–4):995–1007

    Article  Google Scholar 

  • Hasumi H, Emori S (2004) K-1 coupled GCM (MIROC) description. Center for Climate System Research (CCSR), University of Tokyo, Technical reports

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic oscillation. Science 291(5504):603–605

    Article  Google Scholar 

  • Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 79(3):231–244

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)] Cambridge University Press, Cambridge, 1535 pp

  • Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong BW, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The New Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327–1353

    Article  Google Scholar 

  • Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972

    Article  Google Scholar 

  • Kalela-Brundin M (1999) Climatic information from tree-rings of Pinus sylvestris L. and a reconstruction of summer temperatures back to AD 1500 in Femundsmarka, eastern Norway, using partial least squares regression (PLS) analysis. Holocene 9(1):59–77

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758

    Article  Google Scholar 

  • Kuzmina SI, Bengtsson L, Johannessen OM, Drange H, Bobylev LP, Miles MW (2005) The North Atlantic Oscillation and greenhouse-gas forcing. Geophys Res Lett 32:L04703. doi:10.1029/2004GL021064

    Google Scholar 

  • Le Cozannet G, Lecacheux S, Delvallee E, Desramaut N, Oliveros C, Pedreros R (2011) Teleconnection pattern influence on sea-wave climate in the Bay of Biscay. J Clim 24(3):641–652

    Article  Google Scholar 

  • Lindgren F, Geladi P, Wold S (1993) The kernel algorithm for PLS. J Chemom 7(1):45–59

    Article  Google Scholar 

  • Lopez-Moreno JI, Vicente-Serrano SM, Moran-Tejeda E, Lorenzo-Lacruz J, Kenawy A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global Planet Change 77(1–2):62–76

    Article  Google Scholar 

  • Lorber A, Kowalski BR (1988) A note on the use of the partial least-squares method for multivariate calibration. Appl Spectrosc 42(8):1572–1574

    Article  Google Scholar 

  • Lucarini V, Russell GL (2002) Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. J Geophys Res Atmos 107(D15). doi:10.1029/2001JD001247

  • Luo DH, Gong TT, Diao Y, Zhou W (2007) Storm tracks and annular modes. Geophys Res Lett 34:L17701. doi:10.1029/2007GL030436

    Article  Google Scholar 

  • Mariotti A, Dell’Aquila A (2012) Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes. Clim Dyn 38(5–6):1129–1145

    Article  Google Scholar 

  • Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti MA, Foujols MA, Fichefet TT, Friedlingstein P, Gosse H, Grandpeix JY, Hourdin FF, Krinner G, Lvi C, Madec G, Musat I, de Noblet N, Polcher J, Talandier C (2006) The new IPSL climate system model: IPSL-CM4. Note Ple Modlisation IPSL 26:1–86

    Google Scholar 

  • McHugh MJ, Rogers JC (2005) Multi-model representation of the North Atlantic Oscillation in the 20th and 21st centuries. Geophys Res Lett 32:L21713. doi:10.1029/2005GL023679

    Article  Google Scholar 

  • McIntosh AR, Lobaugh NJ (2004) Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 23:S250–S263

    Article  Google Scholar 

  • McIntosh PC, Ash AJ, Smith MS (2005) From oceans to farms: the value of a novel statistical climate forecast for agricultural management. J Clim 18(20):4287–4302

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394

    Article  Google Scholar 

  • Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J Geophys Res 111:D18101. doi:10.1029/2005JD006323

    Article  Google Scholar 

  • Molteni F, King MP, Kucharski F, Straus DM (2011) Planetary-scale variability in the northern winter and the impact of land-sea thermal contrast. Clim Dyn 37(1–2):151–170

    Article  Google Scholar 

  • Moore GWK, Renfrew IA, Pickart RS (2013) Multidecadal mobility of the North Atlantic oscillation. J Clim 26(8):2453–2466

    Article  Google Scholar 

  • Naes T, Martens H (1985) Comparison of prediction methods for multicollinear data. Commun Stat Simul Comput 14(3):545–576

    Article  Google Scholar 

  • Nieto S, Frias MD, Rodriguez-Puebla C (2004) Assessing two different climatic models and the NCEP-NCAR reanalysis data for the description of winter precipitation in the Iberian Peninsula. Int J Climatol 24(3):361–376

    Article  Google Scholar 

  • Nieto S, Rodriguez-Puebla C (2006) Comparison of precipitation from observed data and general circulation models over the Iberian Peninsula. J Clim 19(17):4254–4275

    Article  Google Scholar 

  • OrtizBevia MJ, Alvarez-Garcia FJ, Liguori G, Carretero JH (2012) The Western Mediterranean summer variability and its feedbacks. Clim Dyn 39(12):3103–3120

    Article  Google Scholar 

  • Osborn TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic oscillation as simulated by a coupled climate model. Clim Dyn 15(9):685–702

    Article  Google Scholar 

  • Osborn TJ (2004) Simulating the winter North Atlantic oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22(6–7):605–623

    Google Scholar 

  • Osborn T (2011) Variability and changes in the North Atlantic oscillation index. In: Vicente-Serrano SM, Trigo RM (eds) Hydrological, socioeconomic and ecological impacts of the North Atlantic oscillation in the Mediterranean Region, Advances in Global Change Research, vol 46. Springer Science+Business Media B. V., Newyork, pp 9–22

  • Panagiotopoulos F, Shahgedanova M, Stephenson DB (2002) A review of Northern Hemisphere winter-time teleconnection patterns. J Phys IV (Proceedings) 12(10):27–47

    Article  Google Scholar 

  • Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32(5):711–737

    Article  Google Scholar 

  • Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier, New York

    Google Scholar 

  • Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J Clim 17(19):3728–3744

    Article  Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6(3):293–335

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Rodriguez-Puebla C (2010) Climate teleconnections affecting Iberian Peninsula. Climate variability. Predictability and expected changes. In: Perez FF, Boscolo R (eds) Report climate in Spain: past, present and future, CLIVAR-Spain, chap.4, pp 53–67

  • Rodriguez-Fonseca B, Sanchez E, Arribas A (2005) Winter climate variability changes over Europe and the Mediterranean region under increased greenhouse conditions. Geophys Res Lett 32:L13702. doi:10.1029/2005GL022800

    Article  Google Scholar 

  • Rodriguez-Puebla C, Encinas AH, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18(3):299–316

    Article  Google Scholar 

  • Rodriguez-Puebla C, Nieto S (2010) Trends of precipitation over the Iberian Peninsula and the North Atlantic oscillation under climate change conditions. Int J Climatol 30(12):1807–1815

    Google Scholar 

  • Rosipal R, Kramer N (2006) Overview and recent advances in partial least squares. Subspace, latent structure and feature selection 3940:34–51

    Article  Google Scholar 

  • Salas-Melia D, Chauvin F, Deque M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. CNRM working note 103:36

  • Schenk F, Wagner S, Zorita E (2009) Nonstationarity between the North Atlantic Oscillation (NAO) and its climate impact on Northern Europe. In AGU Fall meeting abstracts, vol 1, p 0261

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu YY, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao MS (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153–192

    Article  Google Scholar 

  • Scoccimarro E, Gualdi S, Fogli PG, Manzini E, Grezio A, Navarra A (2007). INGV-SXG: a coupled atmosphere ocean sea-ice general circulation climate model. CMCC Research Paper, 15

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Smoliak BV, Wallace JM, Stoelinga MT, Mitchell TP (2010) Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys Res Lett 37:L03801. doi:10.1029/2009GL041478

    Google Scholar 

  • Stephenson DB, Pavan V, Collins M, Junge MM, Quadrelli R, Participating CMG (2006) North Atlantic oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27(4):401–420

    Article  Google Scholar 

  • Stoner AMK, Hayhoe K, Wuebbles DJ (2009) Assessing general circulation model simulations of atmospheric teleconnection patterns. J Clim 22(16):4348–4372

    Article  Google Scholar 

  • Tan YX, Shi LB, Tong WD, Hwang GTG, Wang C (2004) Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models. Comput Biol Chem 28(3):235–244

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Math Phys Eng Sci 365(1857):2053–2075

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2001) Regional climate impacts of the northern hemisphere annular mode. Science 293(5527):85–89

    Article  Google Scholar 

  • Tobias RD (1995) An introduction to partial least squares regression. In: Proceedings of annual SAS users group international conference, 20th, Orlando, FL

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans 103(C7):14291–14324

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15(7):551–559

    Article  Google Scholar 

  • Vicente-Serrano SM, Lopez-Moreno JI (2008) Nonstationary influence of the North Atlantic Oscillation on European precipitation. J Geophys Res Atmos 113:D20120. doi:10.1029/2008JD010382

    Article  Google Scholar 

  • Villarini G, Smith JA, Vitolo R, Stephenson DB (2013) On the temporal clustering of US floods and its relationship to climate teleconnection patterns. Int J Climatol 33(3):629–640

    Article  Google Scholar 

  • Von Storch H (1995) Spatial patterns: EOFs and CCA. In: von Storch H, Navarra A (eds) Anal Clim Var. Springer-Verlag, India, pp 227–258

    Chapter  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109(4):784–812

    Article  Google Scholar 

  • Wallace JM, Fu Q, Smoliak BV, Lin P, Johanson CM (2012) Simulated versus observe patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc Natl Acad Sci 109(36):14337–14342

    Article  Google Scholar 

  • Wang Y-H, Magnusdottir G (2012) The shift of the northern node of the NAO and cyclonic rossby wave breaking. J Clim 25(22):7973–7982

    Article  Google Scholar 

  • Washington WM, Weatherly JW, Meehl GA, Semtner AJ, Bettge TW, Craig AP, Strand WG, Arblaster J, Wayland VB, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16(10–11):755–774

    Article  Google Scholar 

  • Wold H (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiah PJ (ed) Multivar Anal. Academic Press, New York, pp 391–420

    Google Scholar 

  • Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear-regression. The partial least squares (PLS) approach to generalized inverses. Siam J Sci Stat Comput 5(3):735–743

    Article  Google Scholar 

  • Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    Article  Google Scholar 

  • Woollings T, Hannachi A, Hoskins B, Turner A (2010) A regime view of the North Atlantic oscillation and its response to anthropogenic forcing. J Clim 23(6):1291–1307

    Article  Google Scholar 

  • Wyatt MG, Kravtsov S, Tsonis AA (2012) Atlantic multidecadal oscillation and northern hemisphere’s climate variability. Clim Dyn 38:929–949

    Article  Google Scholar 

  • Yongquiang Y, Xuehong Z, Yufu G (2004) Global coupled ocean–atmosphere general circulation models in LAGS/IAP. Adv Atmos Sci 21(3):444–455

    Article  Google Scholar 

  • Yue S, Wang CY (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resourc Manag 18(3):201–218

    Article  Google Scholar 

  • Yukimoto S, Noda A, Kitoh A, Hosaka M, Yoshimura H, Uchiyama T, Shibata K, Arakawa O, Kusunoki S (2006) Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). J Meteorol Soc Jpn 84(2):333–363

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous reviewers of this paper for their numerous and useful comments on the original manuscript. We are very grateful to Dr. Timothy Osborn, from the Climate Research Unit (CRU) of the University of East Anglia, for his helpful and productive conversations about some aspects of the paper. We would like to acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their role in making available the WCRP CMIP3 multi-model dataset. Support for this dataset is provided by the Office of Science, U. S. Department of Energy. We would like to thank the NCEP/NCAR for providing the reanalysis, the Climate Prediction Center (CPC) of NOAA for the Northern Hemisphere Teleconnection Indices and the developers of CDAT software. We also thank Guillaume Maze (http://www.guillaumemaze.org) for providing a MATLAB script for plotting good Taylor diagrams. We also thank Javier Vegas-Regidor for his support with programming. This work is supported under grants from the Spanish Ministry of Science and Innovation CGL2008-04619 and CGL2011-23209, from the Regional Government of Castile and Leon SA222/A11-2 with European FEDER funds and from the Spanish Ministry of Environment MOVAC ref.200800050084028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gonzalez-Reviriego.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8222 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Reviriego, N., Rodriguez-Puebla, C. & Rodriguez-Fonseca, B. Evaluation of observed and simulated teleconnections over the Euro-Atlantic region on the basis of partial least squares regression. Clim Dyn 44, 2989–3014 (2015). https://doi.org/10.1007/s00382-014-2367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2367-2

Keywords

Navigation