Skip to main content

Advertisement

Log in

Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We analyze decadal climate variability in the Mediterranean region using observational datasets over the period 1850–2009 and a regional climate model simulation for the period 1960–2000, focusing in particular on the winter (DJF) and summer (JJA) seasons. Our results show that decadal variability associated with the winter and summer manifestations of the North Atlantic Oscillation (NAO and SNAO respectively) and the Atlantic Multidecadal Oscillation (AMO) significantly contribute to decadal climate anomalies over the Mediterranean region during these seasons. Over 30% of decadal variance in DJF and JJA precipitation in parts of the Mediterranean region can be explained by NAO and SNAO variability respectively. During JJA, the AMO explains over 30% of regional surface air temperature anomalies and Mediterranean Sea surface temperature anomalies, with significant influence also in the transition seasons. In DJF, only Mediterranean SST still significantly correlates with the AMO while regional surface air temperature does not. Also, there is no significant NAO influence on decadal Mediterranean surface air temperature anomalies during this season. A simulation with the PROTHEUS regional ocean–atmosphere coupled model is utilized to investigate processes determining regional decadal changes during the 1960–2000 period, specifically the wetter and cooler 1971–1985 conditions versus the drier and warmer 1986–2000 conditions. The simulation successfully captures the essence of observed decadal changes. Model set-up suggests that AMO variability is transmitted to the Mediterranean/European region and the Mediterranean Sea via atmospheric processes. Regional feedbacks involving cloud cover and soil moisture changes also appear to contribute to observed changes. If confirmed, the linkage between Mediterranean temperatures and the AMO may imply a certain degree of regional decadal climate predictability. The AMO and other decadal influences outlined here should be considered along with those from long-term increases in greenhouse gas forcings when making regional climate out-looks for the Mediterranean 10–20 years out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Artale V et al (2010) An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn. doi:10.1007/s00382-009-0691-8

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19(22):5816–5842

    Article  Google Scholar 

  • Barnston A, Livezey RE (1987) Classification, seasonality and persistence of low-frequency circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Brohan P et al (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Carillo A et al (2011) Sea level rise over the Mediterranean Sea: present climate and scenario simulation (in preparation)

  • Della-Marta PM et al (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multi-decadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Dünkeloh A, Jacobeit J (2003) Circulation dynamics of Mediterranean precipitation variability 1948–98. Int J Climatol 23(15):1843–1866

    Article  Google Scholar 

  • Enfield DB et al (2001) The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Folland CK et al (2009) The summer North Atlantic Oscillation: past, present, and future. J Clim 22:1082–1103

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8):L08707

    Article  Google Scholar 

  • Giorgi F, Bi X (2009) Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys Res Lett 36:L06709. doi:10.1029/2009GL037593

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63(2–3):90–104

    Article  Google Scholar 

  • Hagemann S et al (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23:547–567

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc (in press)

  • Hodson DLR et al (2009) Climate impacts of recent multidecadal changes in Atlantic Ocean Sea Surface Temperature: a multimodel comparison. Clim Dyn. doi:10.1007/s00382-009-0571-2

  • Hurrell JW (1995) Decadal trends in the North-Atlantic Oscillation—regional temperatures and precipitation. Science 269(5224):676–679

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) (2003) The North Atlantic oscillation: climate signicance and environmental impact. Geophysical Monograph Series, vol 134

  • IPCC (2007) Climate change 2007: The physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jones PD et al (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17(13):1433–1450

    Article  Google Scholar 

  • Karoly DJ, Wu Q (2005) Detection of regional surface temperature trends. J Clim 18:4337–4343

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1985

    Article  Google Scholar 

  • Knight JR (2009) The Atlantic Multidecadal Oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625

    Article  Google Scholar 

  • Knight JR et al (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Knutson TR et al (1999) Model assessment of regional temperature trends (1949–1997). J Geophys Res 104:30981–30996

    Article  Google Scholar 

  • Krichak SO, Alpert P (2005) Signatures of the NAO in the atmospheric circulation during wet winter months over the Mediterranean region. Theor Appl Climatol 82:27–39

    Article  Google Scholar 

  • Kushnir Y (1994) Interdecadal variations in North-Atlantic sea-surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Lelieveld J et al (2002) Global air pollution crossroads over the mediterranean. Science 298:794–799

    Article  Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean, NOAA/ERL GFDL Professional Paper 13, Princeton, N.J.(NTISPB83-184093), p 173

  • Mariotti A (2010) Recent changes in Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Clim 23:1513–1525

    Article  Google Scholar 

  • Mariotti A, Arkin P (2007) The North Atlantic Oscillation and oceanic precipitation variability. Clim Dyn 28(1):35–51

    Article  Google Scholar 

  • Mariotti A et al (2002) The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J Clim 15(13):1674–1690

    Article  Google Scholar 

  • Mariotti A et al (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3(4):044001

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766

    Article  Google Scholar 

  • Marullo S et al (2011) The SST multi-decadal variability in the Atlantic-Mediterranean region and its relation to AMO. J Clim (in press)

  • Matsoukas C et al (2005) Seasonal heat budget of the Mediterranean Sea. J Geophys Res 110:15

    Article  Google Scholar 

  • MEDAR-Group (2002)

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712

    Article  Google Scholar 

  • Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming” and solar “brightening”. J Geophys Res Atmos 112:D08214

    Article  Google Scholar 

  • Pal J et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Rayner NA et al (1997) Version 2.2 of the Global sea-Ice and Sea Surface Temperature data set, 1903–1994, CRTN 74 Available from the Hadley Center, UKMO, Bracknell, Berks, p 22

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Sanchez-Gomez E et al (2009) Future changes in the Mediterranean water budget projected by an ensemble of Regional Climate Models. Geophys Res Lett 36(21):L21401

    Article  Google Scholar 

  • Seneviratne SI et al (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105

    Article  Google Scholar 

  • Somot S et al (2006) Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim Dyn 27(7–8):851–879

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Ting MF et al (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quat J R Met Soc 131(612):2961–3012

    Article  Google Scholar 

  • van Oldenborgh GJ et al (2009) Western Europe is warming much faster then expected. Clim Past 5:1–12

    Article  Google Scholar 

  • Vautard R, Yiou P (2009) Control of recent European surface climate change by atmospheric flow. Geophys Res Lett 36(L22702):6

    Google Scholar 

  • Vautard R et al (2007) Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys Res Lett 34:5

    Article  Google Scholar 

  • Xoplaki E et al (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78

    Article  Google Scholar 

  • Zampieri M et al (2009) Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J Clim 22:4747–4758

    Article  Google Scholar 

Download references

Acknowledgments

Discussion with our colleagues Giorgio Di Sarra, Vincenzo Artale, Volfango Rupolo and Ning Zeng are gratefully acknowledged. We acknowledge financial support by the EC IP CIRCE (Contract No. 036961); NOAA grant #NA10OAR4310208. We thank the PROTHEUS group for providing the model simulation.We would also like to thank the Met Office Hadley Centre and the Climatic Research Unit for the use of their gridded observational datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annarita Mariotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariotti, A., Dell’Aquila, A. Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes. Clim Dyn 38, 1129–1145 (2012). https://doi.org/10.1007/s00382-011-1056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1056-7

Keywords

Navigation