Skip to main content

Advertisement

Log in

Changes of interannual NAO variability in response to greenhouse gases forcing

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allan RJ, Ansell TJ (2006) A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J Clim 19:5816–5842

    Article  Google Scholar 

  • Ambaum MHP, Hoskins BJ (2002) The NAO troposphere-stratosphere connection. J Clim 15:1969–1978

    Article  Google Scholar 

  • Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and skill of extended-range weather forecasts. Science 301:636–640

    Article  Google Scholar 

  • Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. DWD, Klimastatusbericht 2004, 181–190. http://www.dwd.de/de/FundE/Klima/KLIS/prod/KSB/ksb04/28_precipitation.pdf

  • Bellucci A, Gualdi S, Scoccimarro E, Navarra A (2008) NAO-ocean circulation interactions in a coupled general circulation model. Clim Dyn 31:759–777

    Article  Google Scholar 

  • Benedict JJ, Lee S, Feldstein SB (2004) Synoptic view of the North Atlantic Oscillation. J Atmos Sci 61:121–144

    Article  Google Scholar 

  • Butler AH, Thompson DWJ, Heikes R (2010) The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J Clim 23:3474–3496

    Article  Google Scholar 

  • Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time and oceanic forcing. J Clim 17:1055–1068

    Article  Google Scholar 

  • Castanheira JM, Graf HF (2003) North Pacific–North Atlantic relationships under stratospheric control. J Geophys Res, 108:D1, 4036. doi :10.1029/2002JD002754

  • Castanheira JM, Liberato MLR, De la Torre L, Graf HF, DaCamara CC (2009) Baroclinic Rossby wave forcing and barotropic Rossby wave response to stratospheric vortex variability. J Atmos Sci 66:902–914

    Article  Google Scholar 

  • Charlton AJ, O’Neill AO, Lahoz WA, Massacand AC (2004) Sensitivity of tropospheric forecasts to stratospheric initial conditions Quart. J Roy Meteor Soc 130:1771–1792

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: A 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Chen G, Held IM, Robinson WA (2007) Sensitivity of the latitude of the surface westerlies to surface friction. J Atmos Sci 64:2899–2915. doi:10.1175/JAS3995.1

    Article  Google Scholar 

  • Christiansen B (2003) Evidence for nonlinear climate change: two stratospheric regimes and a regime shift. J Clim 16:3681–3690

    Article  Google Scholar 

  • Cordero EC, de F. Forster PM (2006) Stratospheric variability and trends in models used for the IPCC AR4. Atmos Chem Phys 6:5369–5380

    Article  Google Scholar 

  • Dong BW, Sutton RT, Gregory JM (2009) Understanding land-sea warming contrast in response to increasing greenhouse gases. Part I: transient adjustment. J Clim 22:3079–3097

    Article  Google Scholar 

  • Folland CK, Sexton DMH, Karoly DJ, Johnson CE, Rowell DP, Parker DE (1998) Influences of anthropogenic and oceanic forcing on recent climate change. Geophys Res Lett 25(3):353–356

    Article  Google Scholar 

  • Franzke C, Lee S, Feldstein SB (2004) Is the North Atlantic Oscillation a breaking wave? J Atmos Sci 61:145–160

    Article  Google Scholar 

  • Fyfe JC, Boer GJ, Flato G (1999) The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys Res Lett 26:1601–1604

    Article  Google Scholar 

  • Gillett NP, Allen MR, Williams KD (2002) The role of stratospheric resolution in simulating the Arctic Oscillation response to greenhouse gases. Geophys Res Lett 29. doi:10.1029/2001GL014444

  • Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with a multi-model ensemble. Geophys Res Lett L19714. doi:10.1029/2005GL023640

  • Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J Clim 18:3672–3685. doi:10.1175/JCLI3472.1

    Article  Google Scholar 

  • Hartmann DL (2000) The key role of lower-level meridional shear in baroclinic wave lifecycles. J Atmos Sci 57:389–401

    Article  Google Scholar 

  • Haynes PH, Marks CJ, McIntyre ME, Shepherd TG, Shine KP (1991) On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci 48:651–678

    Article  Google Scholar 

  • Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys Res Lett 27:989–992

    Article  Google Scholar 

  • Holton JR, Tan HC (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208

    Article  Google Scholar 

  • Honda M, Yamane S, Nakamura H (2007) Inter-basin link between the North Pacific and North Atlantic in the upper tropospheric circulation: its dominance and seasonal dependence. J Meteor Soc Jpn 85:899–908

    Article  Google Scholar 

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm tracks. J Atmos Sci 47:1854–1864

    Article  Google Scholar 

  • Hu ZZ, Wu ZH (2004) The intensification and shift of the annual North Atlantic Oscillation in a global warming scenario simulation. Tellus A 56:112–124

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Johnson NC, Feldstein SB, Trembley B (2008) The continuum of northern hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J Clim 21:6354–6371

    Article  Google Scholar 

  • Jung T, Hilmer M, Ruprecht E, Kleppek S, Gulev SK, Zolina O (2003) Characteristics of the recent eastward shift of interannual NAO variability. J Clim 16:3371–3382

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP-NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Kunz T, Fraedrich K, Lunkeit F (2009) Response of idealized baroclinic wave life cycles to stratospheric flow conditions. J Atmos Sci 66:2288–2302

    Article  Google Scholar 

  • Kuroda Y (2008) Effect of stratospheric sudden warming and vortex intensification on the tropospheric climate. J Geophys Res 113:D15110. doi:10.1029/2007JD009550

    Article  Google Scholar 

  • Kuzmina SI, Bengtsson L, Johannessen OM, Drange H, Bobylev LP, Miles MW (2005) The North Atlantic Oscillation and greenhouse-gas forcing. Geophys Res Lett 32(L04703). doi:10.1029/2004GL021064

  • Lau NC, Nath MJ (1991) Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J Atmos Sci 48:2589–2613

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13:4414–4429

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL, Thompson DWJ, Jeev K, Yung YL (2005) Stratospheric-tropospheric evolution during polar vortex intensification. J Geophys Res 110:D24101. doi:10.1029/2005JD006302

    Article  Google Scholar 

  • Lu J, Greatbatch RJ (2002) The changing relationship between the NAO and northern hemisphere climate variability. Geophys Res Lett 29:1148. doi:10.1029/2001GL014052

    Article  Google Scholar 

  • Luo D, Gong T (2006) A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophys Res Lett 33:L24815. doi:10.1029/2006GL027860

    Article  Google Scholar 

  • Norton WA (2003) Sensitivity of northern hemisphere surface climate to simulation of the stratospheric polar vortex. Geophys Res Lett 1627. doi:10.1029/2003GL016958

  • Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22:605–623

    Article  Google Scholar 

  • Osborn TJ (2006) Recent variations in the winter North Atlantic Oscillation. Weather 61:353–355

    Article  Google Scholar 

  • Perlwitz Ju, Harnik N (2004) Downward coupling between the stratosphere and troposphere: the relative roles of wave and zonal mean processes. J Clim 17:4902–4909

    Article  Google Scholar 

  • Peterson KA, Lu J, Greatbatch RJ (2003) Evidence of nonlinear dynamics in the eastward shift of the NAO. Geophys Res Lett 1030. doi:10.1029/2002GL015585

  • Pinto JG, Reyers M, Ulbrich U (2010) The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Clim Dyn (in press)

  • Pope VD, Gallani M, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model––HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14), No 4407, doi:10.1029/2002JD002670

  • Riviere G, Orlanski I (2007) Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J Atmos Sci 64:241–266

    Article  Google Scholar 

  • Rogers JC (1997) North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability over Northern Europe. J Clim 10:1635–1647

    Article  Google Scholar 

  • Scaife AA, Knight JR, Folland CK, Vallis GK (2005) A stratospheric Influence on the winter NAO and North Atlantic Surface Climate. Geophys Res Lett 32:L18715

    Article  Google Scholar 

  • Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic Oscillation. J Clim 21:72–83

    Article  Google Scholar 

  • Shindell DT, Miller RL, Schmidt GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455

    Article  Google Scholar 

  • Shine KP et al (2003) A comparison of model-simulated trends in stratospheric temperatures. Q J R Meteorol Soc 129:1565–1588

    Article  Google Scholar 

  • Sigmond M, Scinocca JF (2010) The influence of the basic state on the Northern Hemisphere circulation response to climate change. J Clim 23:1434–1446

    Article  Google Scholar 

  • Sigmond M, Scinocca JF, Kushner PJ (2008) Impact of the stratosphere on tropospheric climate change. Geophys Res Lett 35:L12706. doi:10.1029/2008GL033573

    Article  Google Scholar 

  • Simpson IR, Blackburn M, Haigh JD (2009) The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J Atmos Sci 66:1347–1365

    Article  Google Scholar 

  • Stephenson DB, Pavan V, Collins M, Junge MM, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27:401–420

    Article  Google Scholar 

  • Sutton RT, Dong BW, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett 34:L02701. doi:10.1029/2006GL028164

    Article  Google Scholar 

  • Thompson DWJ, Lee S, Baldwin MP (2003) Atmospheric processes governing the northern hemisphere Annular Mode/North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington, DC, pp 81–112

    Google Scholar 

  • Thompson DWJ, Furtado JC, Shepherd TG (2006) On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J Atmos Sci 63:2616–2629

    Article  Google Scholar 

  • Ting M, Lau N (1993) A diagnostic and modeling study of the monthly mean wintertime anomalies appearing in a 100-year GCM experiment. J Atmos Sci 50:2845–2867

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15:55–559

    Article  Google Scholar 

  • Vallis GK, Gerber EP (2008) Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dyn Atm Oceans 44:184–212

    Article  Google Scholar 

  • Wettstein JJ, Wallace JM (2010) Observed patterns of month-to-month storm track variability and their relationship to the background flow. J Atmos Sci 67:1420–1437

    Article  Google Scholar 

  • Wittman MAH, Polvani LM, Scott RK, Charlton AJ (2004) Stratospheric influence on baroclinic lifecycles and its connection to the Arctic Oscillation. Geophys Res Lett 31:L16113. doi:10.1029/2004GL020503

    Article  Google Scholar 

  • Wittman MAH, Charlton AJ, Polvani LM (2007) The effect of lower stratospheric shear on baroclinic instability. J Atmos Sci 64:479–496

    Article  Google Scholar 

  • Woollings T (2008) Vertical structure of anthropogenic zonal-mean atmospheric circulation change. Geophys Res Lett 35:L19702. doi:10.1029/2008GL034883

    Article  Google Scholar 

  • Woollings T, Hannachi A, Hoskins B, Turner A (2010a) A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J Climate 23:1291–1307

    Article  Google Scholar 

  • Woollings T, Hannachi A, Hoskins B (2010b) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU DYNAMITE (003903-GOCE) and ENSEMBLES (Contract number 505539). BD and RTS are supported by the UK National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading. University of Delaware precipitation and NCEP Reanalysis are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. We thank Michael Blackburn, Manoj Joshi and Adam Scaife for helpful discussions and comments on an early version of the paper. We also wish to thank two anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buwen Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, B., Sutton, R.T. & Woollings, T. Changes of interannual NAO variability in response to greenhouse gases forcing. Clim Dyn 37, 1621–1641 (2011). https://doi.org/10.1007/s00382-010-0936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0936-6

Keywords

Navigation