Skip to main content

Advertisement

Log in

Challenges of tracking extratropical cyclones in regional climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Extratropical cyclones (ETCs) play a crucial role in determining the climate in a large part of the world. For this reason, climate models’ ability to reproduce ETCs’ characteristics (such as track location and development and decay regions) is of great importance. ETC tracking algorithms are sophisticated diagnostic tools that have been used extensively to evaluate models’ ability to simulate ETCs. In general, these algorithms have been developed and applied to coarse resolution global datasets such as global climate models and reanalyses. As regional climate models (RCMs) mature, the potential for tracking ETCs at considerably higher resolutions has naturally become attractive. Application of ETC tracking algorithms to RCM-produced datasets, however, introduces additional challenges. In order to investigate these challenges, we compare ETC tracking results of a simulation produced by the Canadian Regional Climate Model (CRCM) over North America at a 45-km resolution driven by ECMWF ERA-Interim, with the results obtained directly from the driving reanalyses. The ERA-Interim data is treated in three different ways applying spatial smoothing, the tracking algorithm, and the extraction of the regional grid in a different order, so that individual sources of error can be identified. It is shown that the mere existence of boundaries in the regional domain of the CRCM affects tracking results not only near the boundaries but also well within the domain. To a lesser extent, the use of different spatial smoothing techniques also affects the number of tracked ETCs. However, even after accounting for these artifacts, the CRCM produces a lower ETC count than the driving dataset. This underestimation of the tracking statistics might be related to known CRCM biases, or to some problems with the surface representation at 45-km resolution. Nevertheless, it is concluded that RCMs are a suitable choice for ETC trajectory studies, but only when handled carefully and used over large domains targeting the cyclone track of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301. doi:10.1175/2008JCLI2678.1

    Article  Google Scholar 

  • Bierly GD, Winkler JA (2001) A composite analysis of airstreams within cold-season colorado cyclones. Weather Forecast 16:57–80

    Article  Google Scholar 

  • Blender R, Schubert M (2000) Cyclone tracking in different spatial and temporal resolutions. Mon Weather Rev 128:377. doi:10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2

    Article  Google Scholar 

  • Caya D, Laprise R (1999) A semi-implicit semi-lagrangian regional climate model: the Canadian RCM. Mon Weather Rev 127:341–362

    Article  Google Scholar 

  • Chang EKM, Lee S, Swanson KL (2002) Storm track dynamics. J Clim 15:2163–2183

    Article  Google Scholar 

  • Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res 117:D23118. doi:10.1029/2012JD018578

    Article  Google Scholar 

  • Cressman GP (1959) Monthly weather review. Mon Weather Rev 87:367–374. doi:10.1126/science.27.693.594

    Article  Google Scholar 

  • Davies H (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405–418. doi:10.1256/smsqj.43209

    Google Scholar 

  • De Elía R, Côté H (2010) Climate and climate change sensitivity to model configuration in the Canadian RCM over North America. Meteorol Z 19:325–339. doi:10.1127/0941-2948/2010/0469

    Article  Google Scholar 

  • De Elía R, Caya D, Côté H et al (2008) Evaluation of uncertainties in the CRCM-simulated North American climate. Clim Dyn 30:113–132. doi:10.1007/s00382-007-0288-z

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Grise KM, Son S-W, Gyakum JR (2013) Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon Weather Rev 141:3610–3625. doi:10.1175/MWR-D-12-00322.1

    Article  Google Scholar 

  • Gulev SK, Zolina O, Grigoriev S (2001) Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data

  • He J, Zhang M, Lin W et al (2013) The WRF nested within the CESM: simulations of a mid-latitude cyclone over the Southern Great Plains. J Adv Model Earth Syst 5:611–622. doi:10.1002/jame.20042

    Article  Google Scholar 

  • Hodges KI (1994) A general method for tracking analysis and its application do meteorological data. Mon Weather Rev 122:2573–2586

    Article  Google Scholar 

  • Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123:3458–3465

    Article  Google Scholar 

  • Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373

    Article  Google Scholar 

  • Hodges KI, Lee RW, Bengtsson L (2011) A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Clim 24:4888–4906. doi:10.1175/2011JCLI4097.1

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59:1041–1061

    Article  Google Scholar 

  • Jiang J, Perrie W (2007) The impacts of climate change on autumn North Atlantic midlatitude cyclones. J Clim 20:1174–1187. doi:10.1175/JCLI4058.1

    Article  Google Scholar 

  • Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Q J R Meteorol Soc 132:1839–1857. doi:10.1256/qj.05.212

    Article  Google Scholar 

  • Jung T, Miller MJ, Palmer TN et al (2012) High-resolution global climate simulations with the ECMWF model in project Athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155–3172. doi:10.1175/JCLI-D-11-00265.1

    Article  Google Scholar 

  • Laprise R, Caya D, Frigon A, Paquin D (2003) Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America. Clim Dyn 21:405–421. doi:10.1007/s00382-003-0342-4

    Article  Google Scholar 

  • Leckebusch GC, Koffi B, Ulbrich U et al (2006) Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Clim Res 31:59–74

    Article  Google Scholar 

  • Lionello P, Boldrin U, Giorgi F (2008) Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim Dyn 30:657–671. doi:10.1007/s00382-007-0315-0

    Article  Google Scholar 

  • Long Z, Perrie W, Gyakum J et al (2009) Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the Northwest Atlantic. J Geophys Res 114:1–13. doi:10.1029/2008JD010869

    Google Scholar 

  • Markovic M, Jones CG, Vaillancourt PA et al (2008) An evaluation of the surface radiation budget over North America for a suite of regional climate models against surface station observations. Clim Dyn 31:779–794. doi:10.1007/s00382-008-0378-6

    Article  Google Scholar 

  • Neu U, Akperov MG, Bellenbaum N et al (2012) IMILAST—a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties. Bull Am Meteorol Soc 94:120919072158001. doi:10.1175/BAMS-D-11-00154.1

    Google Scholar 

  • Neu U, Akperov MG, Bellenbaum N, et al. (2013) IMILAST A Community Effort to Intercompare Extratropical criteria. 28–35. doi: 10.1175/BAMS-D-11-00154.2

  • Plummer DA, Caya D, Frigon A et al (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19:3112–3132

    Article  Google Scholar 

  • Riette S, Caya D (2002) Sensitivity of short simulations to the various parameters in the new CRCM spectral nudging. Res Act Atmos Ocean Model 32:7.39–7.40

    Google Scholar 

  • Robert A, Yakimiw E (1986) Identification and elimination of an inflow boundary computational solution in limited area model integrations. Atmos Ocean 24:369–385. doi:10.1080/07055900.1986.9649258

    Article  Google Scholar 

  • Rouse WR, Blyth EM, Crawford RW et al (2003) Energy and water cycles in a high-latitude, north-flowing river system. Bull Am Meteorol Soc 84:73–87. doi:10.1175/BAMS-84-1-73

    Article  Google Scholar 

  • Rouse WR, Oswald CJ, Binyamin J et al (2005) The role of northern lakes in a regional energy balance. J Hydrometeorol 6:291–305

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Déqué M (2008) Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961–2000. Clim Dyn 33:723–736. doi:10.1007/s00382-008-0502-7

    Article  Google Scholar 

  • Semmler T, Varghese S, McGrath R et al (2008a) Regional climate model simulations of North Atlantic cyclones: frequency and intensity changes. Clim Res 36:1–16. doi:10.3354/cr00732

    Article  Google Scholar 

  • Semmler T, Varghese S, McGrath R et al (2008b) Regional model simulation of North Atlantic cyclones: present climate and idealized response to increased sea surface temperature. J Geophys Res 113:D02107. doi:10.1029/2006JD008213

    Google Scholar 

  • Shkolnik IM, Efimov SV (2013) Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties. Environ Res Lett 8:045007. doi:10.1088/1748-9326/8/4/045007

    Article  Google Scholar 

  • Sinclair MR (1997) Objective identification of cyclones and their circulation intensity, and climatology. Weather Forecast 12:595–612

    Article  Google Scholar 

  • Szeto KK, Stewart RE, Yau MK, Gyakum J (2007) Northern tales: a synthesis of MAGS atmospheric and hydrometeorological research. Bull Am Meteorol Soc 88:1411–1425. doi:10.1175/BAMS-88-9-1411

    Article  Google Scholar 

  • Thomas BC, Martin JE (2007) A synoptic climatology and composite analysis of the alberta clipper. Weather Forecast 22:315–333. doi:10.1175/WAF982.1

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Grieger J et al (2013) Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteorol Z 22:61–68. doi:10.1127/0941-2948/2013/0420

    Article  Google Scholar 

  • Van Ulden A, Lenderink G, van den Hurk B, van Meijgaard E (2007) Circulation statistics and climate change in Central Europe: PRUDENCE simulations and observations. Clim Change 81:179–192. doi:10.1007/s10584-006-9212-5

    Article  Google Scholar 

  • Willison J, Robinson WA, Lackmann GM (2013) The importance of resolving mesoscale latent heating in the North Atlantic stormtrack. J Atmos Sci 70:130125092901006. doi:10.1175/JAS-D-12-0226.1

    Article  Google Scholar 

  • Woollings T, Hoskins B, Blackburn M et al (2009) Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim Dyn 35:341–353. doi:10.1007/s00382-009-0554-3

    Article  Google Scholar 

  • Zolina O, Gulev SK (2002) Improving the accuracy of mapping cyclone numbers and frequencies. Mon Weather Rev 130:748–759

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ouranos Climate Simulation and Analysis Group for producing the CRCM simulation and the Climate Scenarios and Services Group, namely Blaise Gauvin St-Denis, for supplying the daily output. We thank K. I. Hodges for providing Kevin Grise with his tracking algorithm. We also like to thank the reviewers and editor for their helpful comments. This project was generously supported by the Fonds de recherche en Science du climat (FRSCO) program from the Ouranos Consortium on Regional Climatology and Adaptation to Climate Change, Montreal, Canada. S.-W. Son’s work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A1006530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Côté.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Côté, H., Grise, K.M., Son, SW. et al. Challenges of tracking extratropical cyclones in regional climate models. Clim Dyn 44, 3101–3109 (2015). https://doi.org/10.1007/s00382-014-2327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2327-x

Keywords

Navigation