Skip to main content

Advertisement

Log in

Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961–2000

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961–2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexandru A, de Elia R, Laprise R (2007) Internal variability in regional climate downscaling at the seasonal time scale. Mon Weather Rev 135:3221–3238. doi:10.1175/MWR3456.1

    Article  Google Scholar 

  • Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term applications. COSMO Newsletter 6

  • Cassou C, Terray L, Hurrel JW, Deser C (2004) North Atlantic winter climate regimes. Spat Asymmetry Stationarity Time Ocean Forcing 17:1055–1068

    Google Scholar 

  • Castro CL, Pielke RA Sr, Leoncini G (2005) Dynamical downscaling: an assessment of value added using a regional climate model. J Geophys Res (Atmospheres) 110:D05108. doi:10.1029/2004JD004721

    Article  Google Scholar 

  • Caya D, Biner S (2004) Internal variability of RCM simulations over an annual cycle. Clim Dyn 22:33–46

    Article  Google Scholar 

  • Cheng X, Wallace JM (1993) Cluster analysis of the northern hemisphere wintertime 500-hPa height field: spatial patterns. J Atmos Sci 50:2694–2696. doi:10.1175/1520-0469(1993)050<2674:CAOTNH>;2.0.CO;2

    Article  Google Scholar 

  • Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Scientific report DMI, Copenhagen, Report 96-4

  • Christensen OB, Gaertner MA, Prego JA, Polcher J (2001) Internal variability of regional climate models. Clim Dyn 17:875–887. doi:10.1007/s003820100154

    Article  Google Scholar 

  • Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147. doi:10.1007/s00382-006-0121-0

    Article  Google Scholar 

  • de Elia R, Caya D, Frigon A, Côté H, Giguère M, Paquin D, Biner S, Plummer D (2007) Evaluation of uncertainties in the CRCM-simulated North American climate: nesting-related issues. Clim Dyn 30:113–132. doi:10.1007/s00382-007-0288-z

    Article  Google Scholar 

  • Farda A, Stepanek P, Halenka T, Skalak P, Belda M (2007) Model ALADIN in climate mode forced with ERA-40 reanalysis (coarse resolution experiment). Meteorol J 10:123–130

    Article  Google Scholar 

  • Fox-Rabinovitz M, Cote J, Dugas B, Deque M, McGregor JL, Belochitski A (2008) Stretched-grid model intercomparison project: decadal regional climate simulations with enhanced variable and uniform-resolution GCMs. Meteorol Atmos Phys (in press)

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339

    Google Scholar 

  • Giorgi F, Bi X (2001) A study of internal variability of regional climate model. J Geophys Res 105:29501–29503. doi:10.1029/2000JD900269

    Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res (Atmospheres) 104:6335–6352. doi:10.1029/98JD02072

    Article  Google Scholar 

  • Haugen JE, Haakensatd H (2006): Validation of HIRHAM version 2 with 50 and 25 km resolution, RegClim general technical report, no. 9, pp 159–173

  • Hewitt CD, Griggs DJ (2004): Ensembles-based predictions of climate changes and their impacts, EOS, 85, 566 pps

  • Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic oscillation. Science 291(5504):603–605. doi:10.1126/science.1058761

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernamental panel of climate change (Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL), Cambridge University Press, UK 996 pp

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77(1–4):61–73

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjelltröm E, Lenderik G, Rockel B, Sanchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van der Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52. doi:10.1007/s10584-006-9213-4

    Article  Google Scholar 

  • Kjelltröm E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullersig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports meteorology and climatology, 108, SMHI, SE-60176 Norrköping, Sweden, 54 pp

  • Laprise R, de Elia R, Caya D, Biner S, Lucas-Picher P, Diaconescu E, Leduc M, Alexandru A, Separovic L (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys (in press)

  • Lenderik G, van der Hurk B, van Meijgaard E, van Ulden A, Cujipers H, (2003) Simulation of present day climate in RACMO2: first results and model developments, KNMI, technical report 252:24

  • Lucas-Picher P, Caya D, Biner S (2004) RCM’s internal variability as function of domain size, research activities in atmosphere and oceanic modelling, WMO/TD. J Cote Ed 1120(34):727–728

    Google Scholar 

  • Lucas-Picher P, Caya D, de Elia R, Laprise R (2008a) Investigation of regional climate models’ internal variability with a ten-member ensemble of ten-year simulations over a large domain. Clim Dyn doi:10.1007/s00382-008-0384-8

  • Lucas-Picher P, Caya D, Biner S, Laprise R (2008b) Quantification of the lateral boundary forcing of a regional climate model using an ageing tracer. Mon Weather Rev. doi:10.1175/2008MWR2448.1

  • Michelangeli P, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Clim 52:1237–1256

    Google Scholar 

  • Miguez-Macho G, Stenchinov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res 109:D13104. doi:10.1029/2003JD004495

    Article  Google Scholar 

  • Plummer D, Caya D, Coté H, Frigon A, Biner S, Giguère M, Paquin D, Harvey R, de Elia R (2006) Climate and climate change over North America as simulated by the Canadian regional climate model. J Clim 19:3112–3132. doi:10.1175/JCLI3769.1

    Article  Google Scholar 

  • Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus (accepted for publication)

  • Rinke A, Marbais P, Dethloff K (2004) Internal variability in Arctic regional climate simulations: case study for the Sheba year. Clim Res 27:197–209. doi:10.3354/cr027197

    Article  Google Scholar 

  • Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180. doi:10.1016/j.gloplacha.2004.06.010

    Article  Google Scholar 

  • SanchezGomez E, Terray L (2005) Large-scale atmospheric dynamics and local intense precipitation episodes. Geophys Res Lett 32:L24711. doi:10.1029/2005GL023990

    Article  Google Scholar 

  • SanchezGomez E. Cassou C., Donson DLR, Keenlyside N Okomura Y (2008) Multi-model signature of the Indian and Western Pacific oceans warming in the occurrence of the North Atlantic weather regimes. Geophys Res Lett (in press). doi:10.1029/2008GL034345

  • Separovic L, de Elia R, Laprise R, (2008): Reproducible and irreproducible components in ensemble simulations of a regional climate model. Mon Weather Rev (in press)

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Uppala S, Kallberg P, Hernandez A, Saarinen S, Fiorino M, Li X, Onogi K, Sokka N, Andrae U, da Costa Bechtold V (2004) ERA-40 : ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2002. ECMWF Newsletter 101:2–21

    Google Scholar 

  • Vannitsem S, Chomé F (2005) One-way nested regional climate simulations and domain size. J Clim 18:229–233. doi:10.1175/JCLI3252.1

    Article  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the north Atlantic: analysis of precursors and successors. J Clim 118:2056–2081

    Google Scholar 

  • Van Ulden A, Lenderink G, van der Hurk B, van Meijgaard E (2007) Circulation statistics and climate change in Central Europe: PRUDENCE simulations and observations. Clim Change 81:179–192. doi:10.1007/s10584-006-9212-5

    Google Scholar 

  • von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673. doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2

    Article  Google Scholar 

  • von Storch H (2005) Models of global and regional climate. In: Anderson MG (ed) Encyclopedia of hydrological sciences, Part 3. Meteorology and climatology, chap 32. pp 478–490. ISBN:0471-49103-9. doi:10.1002/0470848944.hsa035

  • Weisse R, Heyen H, von Storch H (2000) Sensitivity of a regional atmospheric model to a sea-state-dependent roughness and the need for ensemble calculations. Mon Weather Rev 128:3631–3642

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of this work has been provided by the European Union Sixth Framework programme project ENSEMBLES, under contract GOCE-CT-2006-037005. The authors wish to thank Alain Braun (CNRM), A. Farda and P. Stepanek (CHMI), O.B. Christensen (DMI), C. Schär (ETHZ), B. Rockel (GKSS), E. Buonomo (METO-HC), F. Giorgi (ICTP), E. van Meijgaard (KNMI), J.E. Haugen (METNO), D. Jacob (MPI), M. Rummukainen (SMHI), E. Sanchez (UCLM) and D. Paquin (OURANOS) for performing the RCMs experiments and providing the model outputs. Special thank are also given to L. Terray, F. Doblas-Reyes and P. Lucas-Picher for their useful comments on the weather regimes analysis and internal variability diagnostics. We would like to acknowledge J.H. Christensen for coordinating the RT3 activities and O.B. Christensen (DMI) for preparing and maintaining the website from the RT3 database. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Sanchez-Gomez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Gomez, E., Somot, S. & Déqué, M. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961–2000. Clim Dyn 33, 723–736 (2009). https://doi.org/10.1007/s00382-008-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0502-7

Keywords

Navigation