Skip to main content

Advertisement

Log in

Future changes in cyclone climatology over Europe as inferred from a regional climate simulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study analyzes the cyclone climatology in regional climate model simulations of present day (1961–1990) and future (2071–2100, A2 and B2 emission scenarios) european climate conditions. The model domain covers the area from Scandinavia to Northern Africa and from the Eastern Atlantic to Russia at a horizontal grid spacing of 50 km. Compared to present day, in the A2 and B2 scenario conditions the annual average storm track intensity increases over the North-East Atlantic and decreases over Russia and the Eastern Mediterranean region. This overall change pattern is larger in the A2 than in the B2 simulations. However, the cyclone climatology change signal shows a large intermonthly variability and important differences across European regions. The largest changes are found over the North-East Atlantic, where the storm track intensity increases in winter and decreases in summer. A significant reduction of storm track intensity is found during late summer and autumn over the Mediterranean region, and from October to January over Russia. The number of cyclones decreases in future conditions throughout Europe, except over the Central Europe and Mediterranean regions in summer (where it increases). The frequency of intense cyclones and the depth of extreme cyclones increase over the North-East Atlantic, decrease over Russia and show an irregular response over the rest of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The wind fields were produced by the same simulations analyzed in this study, see Sect. 2 for information

References

  • Alexander LV, Tett SFB and Jonsson T (2005) Recent observed changes in severe storms over the United Kingdom and Iceland. Geophys Res Lett 32:L13704

    Article  Google Scholar 

  • Alexandersson H, Schmith T, Iden K, Tuomenvirtas H (2000) Trends in storms in NW Europe derived from an updated pressure data set. Clim Res 14:71–73

    Article  Google Scholar 

  • Barring L, Von Storch H (2004) Scandinavian storminess since about 1800. Geophys Res Lett 31:L20202. doi:10.1029/2004GL020441

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004a) Mean, interannual variability and trends in a regional climate change experiment over Europe. Part I: present day climate (1961–1990). Clim Dyn 22:733–756

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004b) Mean, interannual variability and trends in a regional climate change experiment over Europe. Part II: future climate scenarios (2071–2100). Clim Dyn 23:839–858

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jones RG, Murphy JM, Hassell D, Taylor R (2001) Ensemble mean changes in a simulation of the European mean climate of 2071–2100 using the new Hadley centre regional modeling system HadAM3H/HadRM3H. Hadley Centre report, 19 p

  • Kaas E, Flather R, Lionello P, Malguzzi P, Reistad M, de Ronde JS, von Storch H (2001) STOWASUS 2100: regional storm wave and surge scenario for the 21st century, available at http://web.dmi.dk/pub/STOWASUS-2100/Final/Synthesis.pdf

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year re-analysis project. Bull Amer Meteor Soc 77:437-471

    Article  Google Scholar 

  • Leckebusch G, Koffi B, Ulbrich U, Pinto J, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Clim Res 31:59–74

    Article  Google Scholar 

  • Lionello P (2005) Extreme surges in the Gulf of Venice. Present and future climate. In: Fletcher C, Spencer T (eds) Venice and its lagoon, state of knowledge. Cambridge University Press, Cambridge, pp 59–65

    Google Scholar 

  • Lionello P, Sanna A (2005) Mediterranean wave climate variability and its links with NAO and Indian monsoon. Clim Dyn 26:611–623. doi:10.1007/s00382-005-0025-4

    Article  Google Scholar 

  • Lionello P, Dalan F, Elvini E (2002) Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios. Clim Res 22:147–159

    Article  Google Scholar 

  • Lionello P, Elvini E, Nizzero A (2003) Ocean waves and storm surges in the Adriatic Sea: intercomparison between the present and doubled CO2 climate scenarios. Clim Res 23:217–231

    Article  Google Scholar 

  • Lionello P, Bhend J, Buzzi A, Della-Marta PM, Krichak S, Iansà A, Maheras P, Sanna A, Trigo IF, Trigo R (2006a) Cyclones in the Mediterranean region: climatology and effects on the environment. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 324–372

    Google Scholar 

  • Lionello P, Malanotte-Rizzoli P, Boscolo R, Alpert P, Artale V, Li L, Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E (2006b) The Mediterranean climate: an overview of the main characteristics and issues. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Lionello P, Cogo S, Galati MB, Sanna A (2007) Wind wave climate change in the Mediterranean. Glob Planet Change (in press)

  • Maheras P, Flocas H, Patrikas I, Anagnostopoulou C (2001) A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130

    Article  Google Scholar 

  • Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grabler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge, 599 p

    Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional—scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202. doi:10.1029/2004GL019836

    Article  Google Scholar 

  • Pinto JG, Spangehl T, Ulbrich U, Speth P (2006a) Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorol Zeitschrift 15:279–291

    Article  Google Scholar 

  • Pinto JG, Spangehl T, Ulbrich U, Speth P (2006b) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Zeitschrift 14:823–838

    Article  Google Scholar 

  • Simmons AJ, Gibson JK (2000) The ERA-40 Project Plan, ERA-40 Project Report Series n.1. ECMWF, Reading, 62 p

    Google Scholar 

  • Trigo IF (2005) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dyn 26:127–143. doi:10.1007/s00382-005-0065-9

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift in the NAO and increasing storm track activity over Europe due to anthropogenic green house gas. Clim Dyn 15:551–559

    Article  Google Scholar 

  • Von Storch H, Zwiers FW (1999) Statistical analysis in climate research, Cambridge University Press, Cambridge, 499 p

  • Wang XL, Swail VR (2001) Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J Clim 14:2204–2221

    Article  Google Scholar 

  • Wang XL, Swail VR (2002) Trends of Atlantic wave extremes as simulated in a 40-year wave hindcast using kinematically reanalyzed wind fields. J Clim 15:1020–1035

    Article  Google Scholar 

  • Wang XL, Swail VR (2006) Climate change signal and uncertainty in projections of ocean wave heights. Clim Dyn 26:109–126

    Article  Google Scholar 

  • Wang XL, Swail VR, Zwiers FW (2006) Climatology and changes of extra-tropical cyclone activity: comparison of ERA-40 with NCEP/NCAR reanalysis for 1958–2001. J Clim 19:3145–3166

    Article  Google Scholar 

  • WASA Group (1998) Changing waves and storms in the North East Atlantic? Bull Am Met Soc 79:741–760

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lionello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lionello, P., Boldrin, U. & Giorgi, F. Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim Dyn 30, 657–671 (2008). https://doi.org/10.1007/s00382-007-0315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0315-0

Keywords

Navigation