Skip to main content
Log in

Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemisphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December–January–February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March–April–May; MAM). The mechanisms associated with this SAM–ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Niño3.4 area. Anomalous trade winds and SST anomalies over the Niño3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Niño3.4 area followed by the positive (negative) DJF SAM.

摘 要

越来越多的证据表明热带外因子可以影响 ENSO 的发展. 南半球环状模是南半球热带外大气环流的主导模态. 本文分析结果表明, 南半球夏季(12-2月)的南半球环状模, 可以影响衰减期(3–5月)的 ENSO 振幅. 这种南半球环状模影响 ENSO 振幅的物理机制可以归纳如下: 南半球环状模与南半球中(高)纬度的海温呈现正(负)相关. 这种偶极子型的海温异常结构简称为南大洋偶极子. 12-2 月由南半球环状模导致的南大洋偶极子型海温异常, 持续到 3–5 月后可以进而影响大气环流, 包括 Niño3.4 区域的纬向风. 由南半球环状模导致的 Niño3.4 区域的纬向风和海温异常进而通过 Bjerkness 反馈发展起来. 当 12-2 月南半球环状模为正(负)位相时, 3–5月 Niño3.4区域海温偏冷(暖).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin, M. P., 2001: Annular modes in global daily surface pressure. Geophys. Res. Lett., 28, 4115–4118, doi: 10.1029/2001GL013564.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon.Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Article  Google Scholar 

  • Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, doi: 10.1029/2007GL030971.

    Article  Google Scholar 

  • Cai, W. J., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 1159–1174, doi: 10.1175/1520-0442(2002)015<1159:MOIVOT>2.0.CO;2.

    Article  Google Scholar 

  • Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973–989, doi: 10.1007/s00382-012-1654-z.

    Article  Google Scholar 

  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 4143–4158, doi: 10.1175/JCLI4953.1.

    Article  Google Scholar 

  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climatic Dyn., 25, 477–496, doi: 10.1007/s00382-005-0040-5.

    Article  Google Scholar 

  • Ciasto, L. M., G. R. Simpkins, and M. H. England, 2015: Teleconnections between tropical pacific SST anomalies and extratropical southern hemisphere climate. J. Climate, 28, 56–65, doi: 10.1175/JCLI-D-14-00438.1.

    Article  Google Scholar 

  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSOrelated variations from the climate record. J. Climate, 23, 1957–1978, doi: 10.1175/2009JCLI2735.1.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 57–72, doi: 10.1175/1520-0442 (2003)016<0057:UTPOSS>2.0.CO;2.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: patterns and mechanisms. Annual Review of Marine Science, 2, 115–143, doi: 10.1146/annurev-marine-120408-151453.

    Article  Google Scholar 

  • Ding, R. Q., J. P. Li, and Y. H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 2017–2034, doi: 10.1007/s00382-014-2303-5.

    Article  Google Scholar 

  • Ding, Q. H., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the Southern Annular Mode. J. Climate, 25, 6330–6348, doi: 10.1175/JCLI-D-11-00523.1.

    Article  Google Scholar 

  • Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi: 10.1029/2010GL044888.

    Article  Google Scholar 

  • Feldstein, S. B., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55, 3077–3086, doi: 10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2.

    Article  Google Scholar 

  • Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over South China. J. Geophys. Res., 116(D13), D13102, doi: 10.1029/2010JD015160.

    Article  Google Scholar 

  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern annular mode. J. Climate, 19, 979–997, doi: 10.1175/JCLI3671.1.

    Article  Google Scholar 

  • Fogt, R. L., J. Perlwitz, A. J. Monaghan, D. H. Bromwich, J. M. Jones, and G. J. Marshall, 2009a: Historical SAM variability. Part II: Twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J. Climate, 22, 5346–5365, doi: 10.1175/2009JCLI2786.1.

    Article  Google Scholar 

  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273–275, doi: 10.1126/science.1087440.

    Article  Google Scholar 

  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459–462, doi: 10.1029/1999GL900003.

    Article  Google Scholar 

  • Gong, T. T., S. B. Feldstein, and D. H. Luo, 2010: The impact of ENSO on wave breaking and Southern annular mode events. J. Atmos. Sci., 67, 2854–2870, doi: 10.1175/2010JAS3311.1.

    Article  Google Scholar 

  • Gupta, A. S., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Climate, 19, 4457–4486, doi: 10.1175/JCLI3843.1.

    Article  Google Scholar 

  • Gupta, A. S., and M. H. England, 2007: Coupled oceanatmosphere feedback in the southern annular mode. J. Climate, 20, 3677–3692, doi: 10.1175/JCLI4200.1.

    Article  Google Scholar 

  • Hamlington, B. D., R. F. Milliff, H. van Loon, and K.-Y. Kim, 2015: A Southern Hemisphere sea level pressure-based precursor for ENSO warm and cold events. J. Geophys. Res., 120, 2280–2292, doi: 10.1002/2014JD022674.

    Article  Google Scholar 

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 1303–1315, doi: 10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    Article  Google Scholar 

  • Hong, L. C., Lin Ho, and F. F. Jin, 2014: A southern hemisphere booster of super El Niño. Geophys. Res. Lett., 41, 2142–2149, doi: 10.1002/2014GL059370.

    Article  Google Scholar 

  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kang, S. M., and J. Lu, 2012: Expansion of the Hadley Cell under global warming: Winter versus summer. J. Climate, 25, 8387–8393, doi: 10.1175/JCLI-D-12-00323.1.

    Article  Google Scholar 

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532, doi: 10.1175/2007JCLI2146.1.

    Article  Google Scholar 

  • Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951–954, doi: 10.1126/science.1202131.

    Article  Google Scholar 

  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276–287, doi: 10.1175/JCLI3617.1.

    Article  Google Scholar 

  • Larson, S., and B. Kirtman, 2013: The pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 3189–3194, doi: 10.1002/grl.50571.

    Article  Google Scholar 

  • Larson, S. M., and B. P. Kirtman, 2014: The pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J. Climate, 27, 7018–7032, doi: 10.1175/JCLI-D-14-00055.1.

    Article  Google Scholar 

  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103(C7), 14375–14393, doi: 10.1029/97JC03413.

    Article  Google Scholar 

  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109(C9), 2004, doi: 10.1029/2004JC002403.

    Article  Google Scholar 

  • Li, J. P., 2016: Impacts of annular modes on extreme climate events over the East Asian Monsoon region. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. P. Li, R. Swinbank, R. Grotjahn, and H. Volkert, Eds., Cambridge University Press.

    Chapter  Google Scholar 

  • Li, J. P., and J. X. L. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, doi: 10.1029/2003GL017441.

    Google Scholar 

  • Li, J. P., and Coauthors, 2013: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change. Chinese Journal of Atmospheric Sciences, 37, 518–538, doi: 10.3878/j.issn.1006-9895.2012.12322. (in Chinese)

    Google Scholar 

  • Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the northern hemisphere. J. Climate, 28, 8825–8839, doi: 10.1175/JCLI-D-14-00704.1.

    Article  Google Scholar 

  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the southern hemisphere. J. Atmos. Sci., 58, 3312–3327, doi: 10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    Article  Google Scholar 

  • Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddydriven low-frequency dipole modes. Part I: A simple model of North Atlantic oscillations. J. Atmos. Sci., 64, 3–28, doi: 10.1175/JAS3818.1.

    Article  Google Scholar 

  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 4134–4143, doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    Article  Google Scholar 

  • Nan, S. L., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring southern hemisphere annular mode. Geophys. Res. Lett., 30, 2266, doi: 10.1029/2003GL018381.

    Article  Google Scholar 

  • Shi, W. J., Z. N. Xiao, and J. J. Xue, 2016: Teleconnected influence of the boreal winter Antarctic Oscillation on the Somali Jet: Bridging role of sea surface temperature in southern high and middle latitudes. Adv. Atmos. Sci., 33, 47–57, doi: 10.1007/s00376-015-5094-7.

    Article  Google Scholar 

  • Terray, P., 2011: Southern Hemisphere extra-tropical forcing: A new paradigm for El Niño-Southern Oscillation. Climate Dyn., 36, 2171–2199, doi: 10.1007/s00382-010-0825-z.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, doi: 10.1175/1520-0442 (2000)013<1000:AMITEC>2.0.CO;2.

    Article  Google Scholar 

  • Thompson, D. W. J., and D. J. Lorenz, 2004: The signature of the annular modes in the tropical troposphere. J. Climate, 17, 4330–4342, doi: 10.1175/3193.1.

    Article  Google Scholar 

  • Thompson, D.W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741–749, doi: 10.1038/ngeo1296.

    Article  Google Scholar 

  • van Loon, H., and D. J. Shea, 1985: The Southern Oscillation. Part IV: The precursors south of 15◦S to the extremes of the oscillation. Mon. Wea. Rev., 113, 2063–2074, doi: 10.1175/1520-0493(1985)113<2063:TSOPIT>2.0.CO;2.

    Article  Google Scholar 

  • Vimont D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, doi: 10.1029/2001GL013435.

    Article  Google Scholar 

  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675, doi: 10.1175/1520-0442 (2003)016<2668:TSFMIT>2.0.CO;2.

    Article  Google Scholar 

  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333–3350, doi: 10.1175/JAS3821.1.

    Article  Google Scholar 

  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Article  Google Scholar 

  • Wang, F., 2010a: Subtropical dipole mode in the Southern Hemisphere: A global view. Geophys. Res. Lett., 37, L10702, doi: 10.1029/2010GL042750.

    Google Scholar 

  • Wang, F. M., 2010b: Thermodynamic coupled modes in the tropical atmosphere-ocean: An analytical solution. J. Atmos. Sci., 67, 1667–1677, doi: 10.1175/2009JAS3262.1.

    Article  Google Scholar 

  • Wang, S.-Y., M. L. L’Heureux, and H. H. Chia, 2012a: ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys. Res. Lett., 39, L05702, doi: 10.1029/2012GL050909.

    Google Scholar 

  • Wang, S. Y., M. L’Heureux, and J. H. Yoon, 2012b: Is global warming changing the ENSO precursor in the western north pacific? 37th NOAA Annual Climate Diagnostics and Prediction Workshop, Fort Collins, CO, NOAA, 115–120.

    Google Scholar 

  • Watanabe, M., and A. T. Wittenberg, 2012: A method for disentangling El Niño-mean state interaction. Geophys. Res. Lett., 39, L14702, doi: 10.1029/2012GL052013.

    Google Scholar 

  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562–578, doi: 10.1175/1520-0442(2000)013<0562:SMZWVA>2.0.CO;2.

    Article  Google Scholar 

  • Wu, Z. W., J. P. Li, B. Wang, and X. H. Liu, 2009: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114(D11), D11107, doi: 10.1029/2008JD011501.

    Article  Google Scholar 

  • Xie, S. P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195–208, doi: 10.1175/BAMS-85-2-195.

    Article  Google Scholar 

  • Yamazaki, K., and M. Watanabe, 2015: Effects of extratropical warming on ENSO amplitudes in an ensemble of a coupled GCM. Climate Dyn., 44, 679–693, doi: 10.1007/s00382-014-2145-1.

    Article  Google Scholar 

  • Zhang, H. H, A. Clement, and P. Di Nezio, 2014a: The south pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769–783, doi: 10.1175/JCLI-D-13-00082.1.

    Article  Google Scholar 

  • Zhang, H. H., A. Clement, and B. Medeiros, 2016: The meridional mode in an idealized aquaplanet model: Dependence on the mean state. J. Climate, 29, 2889–2905, doi: 10.1175/JCLI-D-15-0399.1.

    Article  Google Scholar 

  • Zhang, Y., X. Q. Yang, Y. Nie, and G. Chen, 2012: Annular modelike variation in a multilayer quasigeostrophic model. J. Atmos. Sci., 69, 2940–2958, doi: 10.1175/JAS-D-11-0214.1.

    Article  Google Scholar 

  • Zhang, H. H., C. Deser, A. Clement, and R. Tomas, 2014b: Equatorial signatures of the pacific meridional modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568–574, doi: 10.1002/2013GL058842.

    Article  Google Scholar 

  • Zheng, F., and J. P. Li, 2012: Impact of preceding boreal winter southern hemisphere annular mode on spring precipitation over south China and related mechanism. Chinese Journal of Geophysics, 55, 3542–3557, doi: 10.6038/j.issn.0001-5733.2012.11.004. (in Chinese)

    Google Scholar 

  • Zheng, F., J. P. Li, L. Wang, F. Xie, and X. F. Li, 2015a: Crossseasonal influence of the December–February southern hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 6859–6881, doi: 10.1175/JCLI-D-14-00515.1.

    Article  Google Scholar 

  • Zheng, F., J. P. Li, J. Feng, Y. J. Li, and Y. Li, 2015b: Relative importance of the austral summer and autumn SAM in modulating southern hemisphere extratropical autumn SST. J. Climate, 28, 8003–8020, doi: 10.1175/JCLI-D-15-0170.1.

    Article  Google Scholar 

  • Zhou, T. J., and R. C. Yu, 2004: Sea-surface temperature induced variability of the Southern Annular Mode in an atmospheric general circulation model. Geophys. Res. Lett., 31, L24206, doi: 10.1029/2004GL021473.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their insightful comments and suggestions, which contributed greatly towards improving the manuscript. This work was jointly supported by the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201506032), an NSFC project (Grant No. 41405086), and a NationalKeyR&DProgram of China (Grant No. 2016YFA0601801). The datasets, including NCEP–NCAR, 20CR, CMAP, GPCP, and ERSST.v3b, were obtained from NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, via their website: http://www.esrl.noaa.gov/psd/. The HadISST dataset was provided by the Met Office Hadley Centre. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Li, J. & Ding, R. Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay. Adv. Atmos. Sci. 34, 1358–1379 (2017). https://doi.org/10.1007/s00376-017-6339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6339-4

Key words

关键词

Navigation