Skip to main content

Advertisement

Log in

Exotic earthworms maintain soil biodiversity by altering bottom-up effects of plants on the composition of soil microbial groups and nematode communities

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Bottom-up effects of plants on soil communities can be modified by the activity of exotic earthworms, by altering resource availability for soil food webs through feeding, burrowing, and casting activities. The present study explored effects of plants (planting of shrubs) on soil micro-food webs (composition of soil microbial and nematode communities), and whether these effects were altered by the activity of exotic earthworms (exotic earthworms addition). Planted shrubs resulted in a non-significant increase of bacterial biomass and significantly increased the abundance of different nematode trophic groups and total nematode biomass, indicating that planted shrubs had significant bottom-up effects on soil bacteria and nematodes. Planted shrubs decreased nematode diversity, evenness, and richness, but increased nematode dominance in the plots where the abundance of exotic earthworms was not amended. By contrast, these effects of shrub presence on soil biodiversity were not found in the plots that received exotic earthworms. In addition, planted shrubs increased the total energy flux to the nematode community. By contrast, the elevated activity of exotic earthworms mitigated the increase in total energy flux to nematodes in the presence of shrubs, and increased the ratio of fungal to bacterial PLFAs. Both of these changes indicate reduced energy flux in the plots with added exotic earthworms. Nematode diversity decreased, while nematode dominance increased with increasing total energy flux to nematodes, probably because few species benefited from high energy flux. Our study indicates that exotic earthworms can maintain soil biodiversity by reducing the energy flux through soil food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95:631–636

    Article  PubMed  Google Scholar 

  • Barker KR (1985) Nematode extraction and bioassays. In Barker KR, Carter CC, Sasser JN (Eds). An advanced treatise on meloidogyne, Volume 2. Methodology. North Carolina State University Graphics, Raleigh, NC, pp 19–35

  • Barnes AD, Jochum M, Mumme S, Haneda NF, Farajallah A, Widarto TH, Brose U (2014) Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat Commun 5:5351

    Article  CAS  PubMed  Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Article  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Article  CAS  PubMed  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  CAS  PubMed  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    Article  CAS  PubMed  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231

    Article  CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berglyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16s rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522

    Article  PubMed  Google Scholar 

  • Čoja T, Zehetner K, Bruckner A, Watzinger A, Meyer E (2008) Efficacy and side effects of five sampling methods for soil earthworms (Annelida, Lumbricidae). Ecotoxicol Environ Saf 71:552–565

    Article  CAS  PubMed  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology (2nd ed.). Academic Press, San Diego

    Google Scholar 

  • De Beeck MO, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV (2014) Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9:e97629

    Article  Google Scholar 

  • De Long JR, Dorrepaal E, Kardol P, Nilsson MC, Teuber LM, Wardle DA (2016) Contrasting responses of soil microbial and nematode communities to warming and plant functional group removal across a post-fire boreal forest successional gradient. Ecosystems 19:339–355

    Article  CAS  Google Scholar 

  • De Ruiter PC, Neutel AM, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269:1257–1260

    Article  PubMed  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Ehnes RB, Rall BC, Brose U (2011) Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol Lett 14:993–1000

    Article  PubMed  Google Scholar 

  • Eisenhauer N (2010) The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53:343–352

    Article  Google Scholar 

  • Eisenhauer N, Partsch S, Parkinson D, Scheu S (2007) Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol Biochem 39:1099–1110

    Article  CAS  Google Scholar 

  • Eisenhauer N, Milcu A, Sabais ACW, Scheu S (2008) Animal ecosystem engineers modulate the diversity-invasibility relationship. PLoS One 3:e3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhauer N, Milcu A, Nitschke N, Sabais ACW, Scherber C, Scheu S (2009) Earthworm and belowground competition effects on plant productivity in a plant diversity gradient. Oecologia 161:291–301

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2006) World reference base for soil resources 2006 (2nd ed.). World Soil Resources Reports NO.103. FAO, Rome

  • Ferlian O, Eisenhauer N, Aguirrebengoa M, Camara M, Ramirez-Rojas I, Santos F, Tanalgo K, Thakur M (2018) Invasive earthworms erode soil biodiversity: a meta-analysis. J Anim Ecol 87:162–172

    Article  PubMed  Google Scholar 

  • Ferris H, Bongers T (2006) Nematode indicators of organic enrichment. J Nematol 38:3–12

    PubMed  PubMed Central  Google Scholar 

  • Ferris H, Tuomisto H (2015) Unearthing the role of biological diversity in soil health. Soil Biol Biochem 85:101–109

    Article  CAS  Google Scholar 

  • Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agric Ecosyst Environ 24:195–217

    Article  Google Scholar 

  • Fu SL, Ferris H, Brown D, Plant R (2005) Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biol Biochem 37:1979–1987

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Hendrix PF, Callaham JMA, Drake J, Huang CY, James SW, Snyder BA, Zhang W (2008) Pandora’s box contained bait: the global problem of introduced earthworms. Annu Rev Ecol Evol Syst 39:593–613

    Article  Google Scholar 

  • Holtkamp R, Kardol P, van der Wal A, Dekker SC, van der Putten WH, de Ruiter PC (2008) Soil food web structure during ecosystem development after land abandonment. Appl Soil Ecol 39:23–34

    Article  Google Scholar 

  • Huang JH, Zhang WX, Liu MY, Briones MJI, Eisenhauer N, Shao YH, Cai XA, Fu SL, Xia HP (2015) Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil. Soil Biol Biochem 90:152–160

    Article  CAS  Google Scholar 

  • Hugot JP, Baujard P, Morand S (2001) Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3:199–208

    Article  Google Scholar 

  • Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Article  Google Scholar 

  • Lapied E, Lavelle P (2003) The peregrine earthworm Pontoscolex corethrurus in the East coast of Costa Rica. Pedobiologia 47:471–474

    Google Scholar 

  • Lavelle P, Melendez G, Pashanasi B, Schaefer R (1992) Nitrogen mineralization and reorganization in casts of the geophagous tropical earthworm Pontoscolex corethrurus (glossoscolecidae). Biol Fertil Soils 14:49–53

    Article  CAS  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Article  Google Scholar 

  • Liu Z, Zou X (2002) Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest. Ecol Appl 12:1406–1417

    Article  Google Scholar 

  • Lv M, Shao Y, Lin Y, Liang C, Dai J, Liu Y, Fan P, Zhang W, Fu S (2016) Plants modify the effects of earthworms on the soil microbial community and its activity in a subtropical ecosystem. Soil Biol Biochem 103:446–451

    Article  CAS  Google Scholar 

  • Moore JC (1994) Impact of agriculture practices on soil food web structure: theory and application. Agric Ecosyst Environ 51:239–247

    Article  Google Scholar 

  • Moore JC, de Ruiter PC, Hunt HW, Coleman DC, Freckman DW (1996) Microcosms and soil ecology: critical linkages between fields studies and modelling food webs. Ecology 77:694–705

    Article  Google Scholar 

  • Nechitaylo TY, Yakimov MM, Godinho M, Timmis KN, Belogolova E, Byzov BA, Kurakov AV, Jones DL, Golyshin PN (2010) Effect of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on bacterial diversity in soil. Microb Ecol 59:574–587

    Article  PubMed  Google Scholar 

  • Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Phytopathol 48:371–394

    Article  CAS  PubMed  Google Scholar 

  • Neher DA, Darby BJ (2006) Computation and application of nematode community indices: general guidelines. In: Eyualem A, Traunspurger W, Andrassy I (eds) Freshwater Nematodes: Ecology and Taxonomy. CAB International, Wallingford, pp 211–222

    Chapter  Google Scholar 

  • Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B (2008) Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem 40:1103–1113

    Article  CAS  Google Scholar 

  • Pollierer MM, Langel R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736

    Article  PubMed  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rhea-Fournier (2012) The relationship of earthworms and soil carbon, nitrogen, and microbial biomass in a subtropical wet forest in Puerto Rico. MS thesis. University of Puerto Rico – Río Piedras

  • Rooney N, McCann KS (2012) Integrating food web diversity, structure and stability. Trends Ecol Evol 27:40–46

    Article  PubMed  Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269

    Article  CAS  PubMed  Google Scholar 

  • Scheu S (2003) Effect of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856

    Google Scholar 

  • Scheu S, Ruess L, Bonkowski M (2005) Interactions between micro-organisms and soil micro- and mesofauna. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and function. Springer-Verlag, Berlin, pp 253–275

    Chapter  Google Scholar 

  • Scheunemann N, Maraun M, Scheu S, Butenschoen O (2015) The role of shoot residues vs. crop species for soil arthropod diversity and abundance of arable systems. Soil Biol Biochem 81:81–88

    Article  CAS  Google Scholar 

  • Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489

    Article  CAS  Google Scholar 

  • Schwarz B, Barnes AD, Thakur MP, Brose U, Ciobanu M, Reich PB, Rich RL, Rosenbaum B, Stefanski A, Eisenhauer N (2017) Warming alters energetic structure and function but not resilience of soil food webs. Nat Clim Chang 7:895–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzmüller F, Eisenhauer N, Brose U (2015) ‘Trophic whales’ as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment. J Anim Ecol 84:680–691

    Article  PubMed  Google Scholar 

  • Shao Y, Wang X, Zhao J, Wu J, Zhang W, Neher DA, Li Y, Lou Y, Fu S (2016) Subordinate plants sustain the complexity and stability of soil micro-food webs in natural bamboo forest ecosystems. J Appl Ecol 53:130–139

    Article  Google Scholar 

  • Shao Y, Zhang W, Eisenhauer N, Liu T, Xiong Y, Liang C, Fu S (2017) Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities. J Anim Ecol 86:708–717

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Liu T, Eisenhauer N, Zhang W, Wang X, Xiong Y, Liang C, Fu S (2018) Plants mitigate detrimental nitrogen deposition effects on soil biodiversity. Soil Biol Biochem 127:178–186

    Article  CAS  Google Scholar 

  • Szlavecz K, Pitz SL, Bernard MJ, Xia LJ, O’Neill JP, Chang CH, McCormick MK, Whigham DF (2013) Manipulating earthworm abundance using electroshocking in deciduous forests. Pedobiologia 56:33–40

    Article  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart—how to use metagenomics to understand soil quality. Biol Fertil Soils 53:479–484

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems—linking the aboveground and belowground components. Princeton University Press

  • Wardle DA (2005) How plant communities influence decomposer communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 119–138

    Chapter  Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Callaway RM, Van der Putten WH (2011) Terrestrial ecosystem responses to species gains and losses. Science 332:1273–1277

    Article  CAS  PubMed  Google Scholar 

  • Yeates GW (1979) Soil nematodes in terrestrial ecosystems. J Nematol 11:213–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeates GW (1999) Effects of plants on nematode community structure. Annu Rev Phytopathol 37:127–149

    Article  CAS  PubMed  Google Scholar 

  • Yeates GW (2007) Abundance, diversity, and resilience of nematode assemblages in forest. Can J For Res 37:216–225

    Article  Google Scholar 

  • Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74:113–135

    Article  Google Scholar 

  • Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaller JG, Arnone JA (1997) Activity of surface-casting earthworms in a calcareous grassland under elevated atmospheric CO2. Oecologia 111:249–254

    Article  PubMed  Google Scholar 

  • Zhang W, Li J, Guo M, Liao C (2005) Seasonal variation of the earthworm community structure as correlated with environmental factors in three plantations of Heshan, Guangdong, China. Acta Ecol Sin 25:1362–1370

    Google Scholar 

  • Zhu T, Yang C, Wang J, Zeng S, Liu M, Yang J, Bai B, Cao J, Chen X, Müller C (2018) Bacterivore nematodes stimulate soil gross N transformation rates depending on their species. Biol Fertil Soils 54:107–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yongxing Li for his help during soil sampling. The authors are grateful to Prof. Wenju Liang, Prof. Paolo Nannipieri, and two anonymous reviewers for the helpful comments.

Funding

This study was funded by the Natural Science Foundation of China (31470559), Zhongyuan Scholar Program (182101510005), and “Heshan National Field Research Station of Forest Ecosystem”. NE and OF acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no 677232 to NE). Further support came from the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglei Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 123 kb)

ESM 2

(XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Zhang, W., Eisenhauer, N. et al. Exotic earthworms maintain soil biodiversity by altering bottom-up effects of plants on the composition of soil microbial groups and nematode communities. Biol Fertil Soils 55, 213–227 (2019). https://doi.org/10.1007/s00374-019-01343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-019-01343-0

Keywords

Navigation