Skip to main content

Interactions Between Microorganisms and Soil Micro- and Mesofauna

  • Chapter
Microorganisms in Soils: Roles in Genesis and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren GI, Bosatta E (1996) Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–528

    Google Scholar 

  • Allen-Morley CR, Coleman DC (1989) Resilience of soil biota in various food webs to freezing perturbations. Ecology 70:1124–1141

    Google Scholar 

  • Alphei J, Bonkowski M, Scheu S (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106:111–126

    Google Scholar 

  • Anderson JM (1975) The enigma of soil animal species diversity. In: Vanek J (ed) Progress in soil zoology. Academia Prague, Prague, pp 51–58

    Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62: 45–151

    CAS  Google Scholar 

  • Babel U, Vogel H-J (1989) An evaluation of the activity of Enchytraeidae and Collembola by soil thin sections. Pedobiologia 33:167–172

    Google Scholar 

  • Bardgett RD, Keiller S, Cook R, Gilburn AS (1998) Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biol Biochem 30:531–539

    CAS  Google Scholar 

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40:129–134

    CAS  Google Scholar 

  • Beare MH, Parmelle RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA Jr (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62: 569–591

    Google Scholar 

  • Beare MH, Reddy MV, Tian G, Srivastava SC (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics — the role of decomposer biota. Appl Soil Ecol 6:87–108

    Article  Google Scholar 

  • Bengtsson J (1994) Temporal predictability in forest soil communities. J Anim Ecol 63:653–665

    Google Scholar 

  • Bengtsson J, Setälä H, Zheng DW (1996) Food webs and nutrient cycling in soils: interactions and positive feedbacks. In: Polis GA, Winemiller KO (eds) Food webs. Integration of patterns and dynamics. Chapman and Hall, New York, pp 30–38

    Google Scholar 

  • Bezdicek DF, Kennedy AC (1979) Economic microbial ecology: Symbiotic nitrogen fixation and nitrogen cycling in terrestrial environments. In: Lynch JM, Hobbie JE (eds) Microorganisms in action: concepts and applications in microbial ecology. Blackwell, Oxford, pp 241–260

    Google Scholar 

  • Boenigk J, Arndt H (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81:465–480

    Article  Google Scholar 

  • Bonkowski M, Schaefer M (1997) Interactions between earthworms and soil protozoa — a trophic component in the soil food web. Soil Biol Biochem 29:499–502

    Article  CAS  Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715

    Article  CAS  Google Scholar 

  • Bonkowski M, Griffiths B, Scrimgeour C (2000a) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol 14:37–53

    Article  Google Scholar 

  • Bonkowski M, Cheng W, Griffiths BS, Alphei J, Scheu S (2000b) Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135–147

    Article  Google Scholar 

  • Bonkowski M, Geoghegan IE, Birch ANE, Griffiths BS (2001a) Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos 95:441–450

    Article  Google Scholar 

  • Bonkowski M, Jentschke G, Scheu S (2001b) Contrasting effects of microbial partners in the rhizosphere: interactions between Norway spruce seedlings (Picea abies Karst.), mycorrhiza (Paxillus involutus (Batsch) Fr.) and naked amoebae (protozoa). Appl Soil Ecol 18:193–204

    Article  Google Scholar 

  • Brown ME (1972) Plant growth substances produced by micro-organisms of soil and rhizosphere. J Appl Bacteriol 35:443–451

    CAS  Google Scholar 

  • Chanway CP, Nelson LM, Holl FB (1988) Cultivar specific growth promotion of spring wheat (Triticum aestivum L.) by co-existent Bacillus species. Can J Microbiol 34:925–929

    Article  Google Scholar 

  • Chen B, Snider RJ, Snider RM (1995) Food preference and effects of food type on the life history of some soil Collembola. Pedobiologia 39: 496–505

    Google Scholar 

  • Chen J, Ferris H (1999) The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol Biochem 31:1265–1279

    Article  CAS  Google Scholar 

  • Christensen M (1989) A view of fungal ecology. Mycologia 81: 1–19

    Google Scholar 

  • Christensen S, Griffiths BS, Ekelund F, Rønn R (1992) Huge increase in bacterivores on freshly killed barley roots. FEMS Microbiol Ecol 86:303–309

    Google Scholar 

  • Clarholm M (1981) Protozoan grazing of bacteria in soil — impact and importance. Microb Ecol 7:343–350

    Google Scholar 

  • Clarholm M (1984) Heterotrophic, free-living protozoa: neglected microorganisms with an important task in regulating bacterial populations. In: Klug MJ, Reddy CA (eds) Current perspectives on microbial ecology. American Society for Microbiology, Washington, DC, pp 321–326

    Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    Article  CAS  Google Scholar 

  • Clarholm M (1994) The microbial loop. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley, New York, pp 221–230

    Google Scholar 

  • Clark WC (1964) Fungal-feeding nematodes as possible plant pathogens. NZ J Agric Res 7:441–443

    Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Google Scholar 

  • Coûteaux M-M, Faurie G, Palka L, Steinberg C (1988) Le relation prédateur-proie (protozoaires-bactéries) dans les sols: rôle dans la régulation des populations et conséquences sur les cycles du carbone et de l’azote. Rev Ecol Biol Sol 25: 1–31

    Google Scholar 

  • Cragg RG, Bardgett RD (2001) How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol Biochem 33:2073–2081

    Article  CAS  Google Scholar 

  • Curl EA, Lartey R, Peterson CM (1988) Interactions between root pathogens and soil microarthropods. Agric Ecosyst Environ 24: 249–261

    Google Scholar 

  • De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170

    Google Scholar 

  • De Ruiter PC, Griffiths B, Moore JC (2002) Biodiversity and stability in soil ecosystems: patterns, processes and the effects of disturbance. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning — Synthesis and perspectives. Oxford Univ Press, Oxford, pp 102–113

    Google Scholar 

  • Didden WAM, Fründ H-C, Graefe U (1997) Enchytraeids. In: Benckiser G (ed) Fauna in soil ecosystems. Recycling processes, nutrient fluxes, and agricultural production. Dekker, New York, pp 135–172

    Google Scholar 

  • Digthon J, Boddy L (1989) Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge Univ Press, Cambridge, pp 269–298

    Google Scholar 

  • Ek H, Sjögren M, Arnebrant K, Söderström B (1994) Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl Soil Ecol 1:155–169

    Article  Google Scholar 

  • Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15:321–353

    Article  CAS  Google Scholar 

  • Faber JH (1991) Functional classification of soil fauna: a new approach. Oikos 62:110–117

    Google Scholar 

  • Ferris H, Venette RC, Lau SS (1997) Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biol Biochem 29:1183–1194

    Article  CAS  Google Scholar 

  • Frankland JC (1998) Fungal succession — unravelling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  • Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agric Ecosyst Environ 24:195–217

    Google Scholar 

  • Gange AC (1993) Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol Biochem 25:1021–1026

    Article  Google Scholar 

  • Gange AC (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol Evol 15:369–372

    Article  Google Scholar 

  • Gerhardson B, Clarholm M (1986) Microbial communities on plant roots. In: Jensen V, Kjøller A, Sørensen LH (eds) Microbial communities in soil. Elsevier, London, pp 19–34

    Google Scholar 

  • Giannakis N, Sanders FE (1987) Interactions between nematodes and vesicular-arbuscular mycorrhizal fungi. J Sci Food Agric 40: 123–125

    Google Scholar 

  • Giannakis N, Sanders FE (1989) Interactions between mycophagous nematodes, mycorrhizal and other soil fungi. Agric Ecosyst Environ 29:163–167

    Google Scholar 

  • Giller PS (1996) The diversity of soil communities, the poor mans tropical rainforest. Biodiv Cons 5:135–168

    Google Scholar 

  • Griffiths BS (1989) Enhanced nitrification in the presence of bacteriophagous protozoa. Soil Biol Biochem 21:1045–1052

    CAS  Google Scholar 

  • Griffiths BS (1994) Soil nutrient flow. In: Darbyshire JF (ed) Soil Protozoa. CAB International, Wallingford, pp 65–91

    Google Scholar 

  • Griffiths BS, Robinson D (1992) Root-induced nitrogen mineralization: a nitrogen balance model. Plant Soil 139:253–263

    Article  CAS  Google Scholar 

  • Griffiths BS, Caul S (1993) Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biol Fertil Soils 15: 201–207

    Article  Google Scholar 

  • Griffiths BS, Bardgett RD (1997) Interactions between microbe-feeding invertebrates and soil microorganisms. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Dekker, New York, pp 165–182

    Google Scholar 

  • Griffiths BS, Ekelund F, Rønn R, Christensen S (1993) Protozoa and nematodes on decomposing barley roots. Soil Biol Biochem 25: 1293–1295

    Article  Google Scholar 

  • Griffiths BS, Bonkowski M, Dobson G, Caul S (1999) Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43:297–304

    CAS  Google Scholar 

  • Gunn A, Cherrett JM (1993) The exploitation of food resources by soil meso-invertebrates and macro-invertebrates. Pedobiologia 37: 303–320

    Google Scholar 

  • Hanlon RDG (1981) Influence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentration. Oikos 36:362–367

    Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fertil Soils 18:115–118

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2004) Biodiversity and litter decomposition in terrestrial ecosystems Annu Rev Ecol Syst (in press)

    Google Scholar 

  • Hawes MC (1991) Living plant cells released from the root cap: a regulator of microbial populations in the rhizosphere? In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 51–59

    Google Scholar 

  • Hedlund K, Öhrn MS (2000) Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88:585–591

    Article  Google Scholar 

  • Hiol FH, Dixon RK, Curl EA (1994) The feeding preference of mycophagous Collembola varies with the ectomycorrhizal symbiont. Mycorrhiza 5: 99–103

    Article  Google Scholar 

  • Holland MA (1997) Occam’s razor applied to hormonology: are cytokinins produced by plants? Plant Physiol 115:865–868

    CAS  Google Scholar 

  • Ingham ER, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986) Trophic interactions and nitrogen cycling in a semi-arid grassland soil. II. System responses to removal of different groups of soil microbes or fauna. J Appl Ecol 23:615–630

    CAS  Google Scholar 

  • Ingham RE (1988) Interaction between nematodes and vesicular-arbuscular mycorrhizae. Agric Ecosyst Environ 24:169–182

    Google Scholar 

  • Ingham RE (1992) Interactions between invertebrates and fungi: Effects on nutrient availability. In: Carroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem, 2nd edn. Mycological series 9. Dekker, New York, pp 669–690

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi and their nematode grazers: effects of nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth: non-nutritional effects and interaction with mycorrhizae. Biol Fertil Soils 20:263–269

    Article  Google Scholar 

  • Joergensen RG, Scheu S (1999) Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest rendzina. Soil Biol Biochem 31:859–866

    CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Jürgens K, Pernthaler J, Schalla S, Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol 65: 1241–1250

    Google Scholar 

  • Kaneko N (1995) Composition of feeding types in oribatid mite communities in forest soils. Acta Zool Fenn 196:160–161

    Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  Google Scholar 

  • Klironomos JN, Kendrick B (1995) Relationships among microarthropods, fungi, and their environment. Plant Soil 170:183–197

    Article  CAS  Google Scholar 

  • Klironomos JN, Ursic M (1998) Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biol Fertil Soils 26:250–253

    Article  Google Scholar 

  • Klironomos JN, Widden P, Deslandes I (1992) Feeding preferences of the collembolan Folsomia candida in relation to microfungal successions on decaying litter. Soil Biol Biochem 24:685–692

    Article  Google Scholar 

  • Klironomos JN, Bednarczuk EM, Neville J (1999) Reproductive significance of feeding on saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol 13:756–761

    Article  Google Scholar 

  • Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB (1990) Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils 10:22–28

    CAS  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Laakso J, Setälä H (1999) Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87:57–64

    Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    Article  CAS  Google Scholar 

  • Lartey RT, Curl EA, Peterson CM (1994) Interactions of mycophagous collembola and biological control fungi in the suppression of Rhizoctonia solani. Soil Biol Biochem 26:81–88

    Article  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27: 93–122

    Google Scholar 

  • Lussenhop J (1996) Collembola as mediators of microbial symbiont effects upon soybean. Soil Biol Biochem 28:363–369

    Article  CAS  Google Scholar 

  • Luxton M (1972) Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiologia 12:434–463

    Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Maraun M, Migge S, Schaefer M, Scheu S (1998) Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. Pedobiologia 42:232–240

    Google Scholar 

  • Maraun M, Migge S, Theenhaus A, Scheu S (2003) Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39: 85–95

    Article  Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Marschner H (1992) Nutrient dynamics at the soil-root interface (rhizosphere). In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 3–12

    Google Scholar 

  • Mebes H, Filser J (1998) Does the species composition of Collembola affect nitrogen turnover? Appl Soil Ecol 9:241–247

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratare JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    CAS  Google Scholar 

  • Mengel K (1996) Turnover of organic nitrogen in soils and its availability to crops. Plant Soil 181:83–93

    Article  CAS  Google Scholar 

  • Mikola J (1998) Effects of microbivore species composition and basal resource enrichment on trophic-level biomasses in an experimental microbial-based soil food web. Oecologia 117:396–403

    Article  Google Scholar 

  • Mikola J, Setälä H (1998) No evidence of trophic cascades in an experimental microbial-based soil food web. Ecology 79: 153–164

    Google Scholar 

  • Mikola J, Setälä H (1999) Interplay of omnivory, energy channels and C availability in a microbial-based soil food web. Biol Fertil Soils 28:212–218

    CAS  Google Scholar 

  • Mikola J, Bardgett RD, Hedlund K (2002) Biodiversity, ecosystem functioning and soil decomposer food webs. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning — synthesis and perspectives. Oxford Univ Press, Oxford, pp 169–180

    Google Scholar 

  • Moore JC, Ingham ER, Coleman DC (1987) Interspecific and intraspecific feeding selectivity of Folsomia candida (Willem) (Collembola, Isotomidae) on fungi. Biol Fertil Soils 5:6–12

    Article  Google Scholar 

  • Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33: 419–439

    Google Scholar 

  • Muscolo A, Bovalo F, Gionfriddo F, Nardi S (1999) Earthworm humic matter produces auxinlike effects on Daucus carota cell growth and nitrate metabolism. Soil Biol Biochem 31:1303–1311

    Article  CAS  Google Scholar 

  • Newell K (1984) Interactions between two decomposer basidiomycetes and a collembolan under Sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biol Biochem 16: 235–239

    Google Scholar 

  • Parker LW, Santos PF, Phillips J, Whitford WG (1984) Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan desert annual, Lepidium lasiocacarpum. Ecol Monogr 54:339–360

    CAS  Google Scholar 

  • Parkinson D (1988) Linkages between resource availability, microorganisms and soil invertebrates. Agric Ecosyst Environ 24:21–32

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  Google Scholar 

  • Pernthaler J, Posch T, Simek K, Vrba J, Amann R, Psenner R (1997) Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl Environ Microbiol 63: 596–601

    CAS  Google Scholar 

  • Petersen DJ, Srinivasan M, Chanway CP (1996) Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol Lett 142:271–276

    Article  CAS  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman and Hall, London

    Google Scholar 

  • Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am Nat 138:123–155

    Article  Google Scholar 

  • Ponsard S, Arditi R (2000) What can stable isotopes (δ 15N and δ 13C) tell about the food web of soil macro-invertebrates? Ecology 81:852–864

    Google Scholar 

  • Posch T, Simek K, Vrba J, Pernthaler J, Nedoma J, Sattler B, Sonntag B, Psenner R (1999) Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquat Microb Ecol 18:235–246

    Google Scholar 

  • Pussard M, Alabouvette C, Levrat P (1994) Protozoa interactions with soil microflora and possibilities for biocontrol of plant pathogens. In: Darbyshire JF (ed) Soil protozoa. CAB International, Wallingford, pp 123–146

    Google Scholar 

  • Riffle JW (1975) Two Aphelenchoides species suppress formation of Suillus granulatus ectomycorrhizae with Pinus ponderosa seedlings. Plant Dis Rep 59:951–955

    Google Scholar 

  • Rihani M, Cancela de Fonseca JP, Kiffer E (1995) Decomposition of beech leaf litter by microflora and mesofauna. 2. Food preferences and action of oribatid mites on different substrates. Eur J Soil Biol 31: 67–79

    Google Scholar 

  • Ritz K, Griffiths BS (1987) Effects of carbon and nitrate additions to soil upon leaching of nitrate, microbial predators and nitrogen uptake by plants. Plant Soil 102:229–237

    CAS  Google Scholar 

  • Rolfe BG, Djordjevic MA, Weinman JJ, Mathesius U, Pittock C, Gärtner E, Ride EM, Dong Z, McCully M, McIver J (1997) Root morphogenesis in legumes and cereals and the effect of bacterial inoculation on root development. Plant Soil 194:131–144

    Article  CAS  Google Scholar 

  • Rønn R, Griffiths BS, Ekelund F, Christensen S (1996) Spatial distribution and successional pattern of microbial activity and micro-faunal populations on decomposing barley roots. J Appl Ecol 33:662–672

    Google Scholar 

  • Rosenbrock P, Buscot F, Munch JC (1995) Fungal succession and changes in the fungal degradation potential during the initial stage of litter decomposition in a black alder forest (Alnus glutinosa (L) Gaertn.). Eur J Soil Biol 31:1–11

    Google Scholar 

  • Ruess L, García Zapata EJ, Dighton J (2000) Food preferences of a fungal-feeding Aphelenchoides species. Nematology 2:223–230

    Article  Google Scholar 

  • Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodiv Cons 7:1207–1219

    Google Scholar 

  • Ryle GJA, Powell CE, Gordon AJ (1979) The respiratory costs of nitrogen fixation in soybean, cowpea and white clover. J Exp Bot 30: 145–153

    CAS  Google Scholar 

  • Sabatini MA, Innocenti G (2001) Effects of Collembola on plant-pathogenic fungus interactions in simple experimental systems. Biol Fertil Soils 33:62–66

    Article  Google Scholar 

  • Sadaka-Laulan N, Ponge JF, Roquebert MF, Bury E, Boumezzough A (1998) Feeding preferences of the collembolan Onychiurus sinensis for fungi colonizing holm oak litter (Quercus rotundifolia Lam.). Eur J Soil Biol 34:179–188

    Google Scholar 

  • Scheu S (2001) Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl Ecol 2:3–13

    Article  Google Scholar 

  • Scheu S, Schaefer M (1998) Bottom-up control of the soil macrofauna community in a beechwood on limestone: manipulation of food resources. Ecology 79:1573–1585

    Google Scholar 

  • Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro-and a mesofauna-dominated community. Oecologia 123:285–296

    Article  Google Scholar 

  • Scheu S, Setälä H (2002) Multitrophic interactions in decomposer communities. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge Univ Press, Cambridge, pp 223–264

    Google Scholar 

  • Scheu S, Theenhaus A, Jones TH (1999) Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119:541–551

    Article  Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Article  Google Scholar 

  • Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76:1844–1851

    Google Scholar 

  • Setälä H (2002) Sensitivity of ecosystem functioning to changes in trophic structure, functional group composition and species diversity in belowground food webs. Ecol Res 17:207–215

    Google Scholar 

  • Setälä H, Rissanen J, Markkola AM (1997) Conditional outcomes in the relationship between pine and ectomycorrhizal fungi in relation to biotic and abiotic environment. Oikos 80:112–122

    Google Scholar 

  • Setälä H, Laakso J, Mikola J, Huhta V (1998) Functional diversity of decomposer organisms in relation to primary production. Appl Soil Ecol 9:25–31

    Google Scholar 

  • Shaw PJA (1985) Grazing preferences of Onychiurus armatus (Insecta: Collembola) for mycorrhizal and saprophytic fungi in pine plantations. In: Fitter AH (ed) Microbial interactions in soil. Blackwell, Oxford, pp 333–337

    Google Scholar 

  • Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–441

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Söderström B (1992) The ecological potential of the ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 77–83

    Google Scholar 

  • Stephens PM, Davoren CW (1997) Influence of the earthworms Aporrectodea trapezoides and A. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass. Soil Biol Biochem 29:511–516

    Article  CAS  Google Scholar 

  • Tajovský K, Sautrichova H, Háněl L, Balik V, Lukesova A (1992) Decomposition of faecal pellets of the millipede Glomeris hexasticha (Diplopoda) in forest soil. Pedobiologia 36: 146–158

    Google Scholar 

  • Takeda H (1995) Changes in the collembolan community during the decomposition of needle litter in a coniferous forest. Pedobiologia 39:304–317

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97–104

    Google Scholar 

  • Trofymow JA, Morley CR, Coleman DC, Anderson RV (1983) Mineralization of cellulose in the presence of chitin and assemblages of microflora and fauna in soil. Oecologia 60:103–110

    Article  Google Scholar 

  • Van Veen JA, Merckx R, van de Geiju SC (1989) Plant and soil related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115:179–188

    Article  Google Scholar 

  • Van Vliet PCJ, Beare MH, Coleman DC (1995) Population dynamics and functional roles of Enchytraeidae (Oligochaeta) in hardwood forest and agricultural ecosystems. Plant Soil 170:199–207

    Article  Google Scholar 

  • Verhoef HA, Brussaard L (1990) Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochemistry 11:175–212

    Google Scholar 

  • Visser S (1985) Role of soil invertebrates in determining the composition of soil microbial communities. In: Fitter AH (ed) Ecological interactions in soil. Blackwell, Oxford, pp 297–317

    Google Scholar 

  • Visser S, Whittaker JB (1977) Feeding preferences for certain litter fungi by Onychiurus subtenuis (Collembola). Oikos 29:320–325

    Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I (2003) Interaction between foliar-feeding insects, mycorrhizal fungi, and rhizosphere protozoa on pea plants. Pedobiologia 47:281–287

    Article  Google Scholar 

  • Wang JG, Bakken LR (1997) Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N. Soil Biol Biochem 29:163–170

    Google Scholar 

  • Wardle DA (2002) Linking the aboveground and belowground components. Princeton Univ Press, Princeton

    Google Scholar 

  • Wardle DA, Yeates GW (1993) The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs. Oecologia 93:303–306

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter — experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Google Scholar 

  • Wardle DA, Verhoef HA, Clarholm M (1998) Trophic relationships in the soil microfoodweb: predicting the responses to a changing global environment. Global Change Biol 4:713–727

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheu, S., Ruess, L., Bonkowski, M. (2005). Interactions Between Microorganisms and Soil Micro- and Mesofauna. In: Varma, A., Buscot, F. (eds) Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26609-7_12

Download citation

Publish with us

Policies and ethics