Skip to main content
Log in

Short-term impact of soybean management on ammonia oxidizers in a Brazilian savanna under restoration as revealed by coupling different techniques

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Interactions between soil characteristics and soil microbiota influence soil ecosystem processes such as nitrification however, their complexity makes interpretation difficult. Furthermore, the impact of soil management systems on abundance and activity of soil microbial community is poorly understood, especially in the Neotropics. To investigate these interactions, the effects of tillage, inorganic fertilization, and plant cover on the abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were assessed by quantification of the marker gene (amoA) during different stages of soybean cultivation in a site under restoration from gravel extraction in the Central Brazilian Savanna (Cerrado). Results of molecular analysis and classic and isotope techniques showed that levels of organic C and NH4 +–N were higher in the soybean field during fallow than in an adjacent undisturbed field (Campo sujo). Ammonia oxidizer abundance and nitrification rates were also higher in the agricultural soil than in the undisturbed site, with the lowest ammonium/nitrate ratio in tilled soil. Soil δ15N was lower in the undisturbed soil than the agricultural soil. Both AOA and AOB were more abundant during soybean crop transitional stages, and this increase positively correlated with soil pH, particularly for AOB abundance, in tilled soil and within the soybean rhizosphere. The results suggest that AOB have more copiotrophic characteristics than AOA and are better able to change available ammonium in the soil. The combination of standard soil ecological methods and modern molecular analysis show the short-term modification of ammonia oxidizer abundance and soil N dynamics in a managed system within the Cerrado biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc B Methodol 57:289–300

    Google Scholar 

  • Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127

    Article  Google Scholar 

  • Bresolin JD, Bustamante MM, Kruger RH, Silva MR, Perez KS (2010) Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado. Braz J Microbiol 41:391–403. doi:10.1590/S1517-838220100002000021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante MMC, Medina E, Asner GP, Nardoto GB, Garcia-Montiel DC (2006) Nitrogen cycling in tropical and temperate savannas. Biogeochemistry 79:209–237

    Article  Google Scholar 

  • Bustamante MM, Nardoto GB, Pinto AS, Resende JC, Takahashi FS, Vieira LC (2012) Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems. Braz J Biol 72:655–671. doi:10.1590/S1519-69842012000400005

    Article  CAS  PubMed  Google Scholar 

  • Carvalho JLN, Cerri CEP, Feigl BJ, Piccolo MC, Godinho VP, Cerri CC (2009) Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil Tillage Res 103:342–349

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Wang L, Augusto L, Baisden WT, Brookshire EN, Cramer MD, Hasselquist NJ, Hobbie EA, Kahmen A, Koba K, Kranabetter JM, Mack MC, Marin-Spiotta E, Mayor JR, McLauchlan KK, Michelsen A, Nardoto GB, Oliveira RS, Perakis SS, Peri PL, Quesada CA, Richter A, Schipper LA, Stevenson BA, Turner BL, Viani RA, Wanek W, Zeller B (2015) Convergence of soil nitrogen isotopes across global climate gradients. Sci Rep 5:8280. doi:10.1038/srep08280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruvinel ÊBF, Bustamante MMC, Kozovits ARK, Zepp RG (2011) Soil emissions of NO, N2O and CO2 from croplands in the savanna region of central Brazil. Agric Ecosyst Environ 144:29–40. doi:10.1016/j.agee.2011.07.016

    Article  Google Scholar 

  • Delwiche CC, Zinke PJ, Johnson CM, Virginia RA (1979) Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Bot Gaz. doi:10.2307/2474205

    Google Scholar 

  • Embrapa (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa, Brasília

    Google Scholar 

  • Embrapa (2006) Sistema brasileiro de classificação de solos, 2nd edn. Embrapa - SPI, Rio de Janeiro

    Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869. doi:10.1111/j.1574-6976.2009.00179.x

    Article  CAS  PubMed  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574. doi:10.1111/j.1574-6941.2010.00971.x

    Article  CAS  PubMed  Google Scholar 

  • Gubry-Rangin C et al (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. PNAS 108:21206–21211. doi:10.1073/pnas.1109000108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Eletron 4:9

    Google Scholar 

  • Hernández-Hernández RM, López-Hernández D (2002) Microbial biomass, mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage. Soil Biol Biochem 34:1563–1570

    Article  Google Scholar 

  • Isobe K, Koba K, Suwa Y, Ikutani J, Fang Y, Yoh M, Mo J, Otsuka S, Senoo K (2012) High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition. FEMS Microbiol Ecol 80:193–203. doi:10.1111/j.1574-6941.2011.01294.x

    Article  CAS  PubMed  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB (2011) Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem 43:2184–2193. doi:10.1016/j.soilbio.2011.06.022

    Article  CAS  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671. doi:10.1111/j.1462-2920.2009.01891.x

    Article  CAS  PubMed  Google Scholar 

  • Lazcano C, Gómez-Brandón M, Revilla P, Domínguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol Fertil Soils 49:723–733

    Article  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G, Prosser J, Schuster S, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi:10.1038/nature04983

    Article  CAS  PubMed  Google Scholar 

  • Levičnik-Höfferle S, Nicol GW, Ausec L, Mandić-Mulec I, Prosser JI (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123. doi:10.1111/j.1574-6941.2011.01275.x

    Article  PubMed  Google Scholar 

  • Mao Y, Yannarell AC, Mackie RI (2011) Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One 6, e24750. doi:10.1371/journal.pone.0024750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979. doi:10.1038/nature08465

    Article  CAS  PubMed  Google Scholar 

  • Meier M (1991) Nitratbestimmung in Boden-Proben (N-min-Methode). LaborPraxis, Würzburg, pp 244–247

    Google Scholar 

  • Mendes IC, Hungria M, Vargas MAT (2003) Soybean response to starter nitrogen and Bradyrhizobium inoculation on a Cerrado Oxisol under no-tillage and conventional tillage systems. Rev Bras Ciênc Solo 27:81–87. doi:10.1590/S0100-06832003000100009

    Article  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587. doi:10.1038/ismej.2014.17

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Focks A, Radl V, Welzl G, Schöning I, Schloter M (2014) Influence of land use intensity on the diversity of ammonia oxidizing bacteria and archaea in soils from grassland ecosystems. Microb Ecol 67:161–166. doi:10.1007/s00248-013-0310-4

    Article  CAS  PubMed  Google Scholar 

  • Mulvaney RL (1996) Nitrogen inorganic forms. In: Sparks DL (ed) Methods of soil analyses, vol 3. Soil Science Society of America, Madison, WI, pp 1123–1184

  • Nardoto GB, Bustamante MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesq Agrop Brasileira 38:955–962

    Article  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. doi:10.1111/j.1462-2920.2008.01701.x

    Article  CAS  PubMed  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  CAS  PubMed  Google Scholar 

  • Paula FR, Rodrigues JL, Zhou J, Wu L, Mueller RC, Mirza BS, Bohannan BJ, Nusslein K, Deng Y, Tiedje JM, Pellizari VH (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 23:2988–2999. doi:10.1111/mec.12786

    Article  PubMed  Google Scholar 

  • Peixoto RS, Chaer GM, Franco N, Reis Junior FB, Mendes IC, Rosado AS (2010) A decade of land use contributes to changes in the chemistry, biochemistry and bacterial community structures of soils in the Cerrado. Antonie Van Leeuwenhoek 98:403–413. doi:10.1007/s10482-010-9454-0

    Article  CAS  PubMed  Google Scholar 

  • Piccolo MC, Neill C, Cerri CC (1994) Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronosequence. Plant Soil 162:61–70. doi:10.1007/BF01416090

    Article  CAS  Google Scholar 

  • Pinto AS, Bustamante MMC, Kisselle K, Burke R, Zepp R, Viana LT, Varella RFM, Molina M (2002) Soil emissions of N2O, NO, and CO2 in Brazilian Savannas: Effects of vegetation type, seasonality, and prescribed fires. J Geophys Res 107:1–9. doi:10.1029/2001JD000342

    Article  Google Scholar 

  • Pinto AS, Bustamante MC, da Silva MRSS, Kisselle KW, Brossard M, Kruger R, Zepp RG, Burke RA (2006) Effects of different treatments of pasture restoration on soil trace gas emissions in the cerrados of Central Brazil. Earth Interact 10:1–26

    Article  Google Scholar 

  • Placella SA, Firestone MK (2013) Transcriptional response of nitrifying communities to wetting of dry soil. Appl Environ Microbiol 79:3294–3302. doi:10.1128/AEM.00404-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosser J, Nicol G (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. doi:10.1016/j.tim.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  • Rachid CT, Santos AL, Piccolo MC, Balieiro FC, Coutinho HL, Peixoto RS, Tiedje JM, Rosado AS (2013) Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure. PLoS One 8, e59342. doi:10.1371/journal.pone.0059342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa Cerrados, Planaltina, pp 151–212

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza RC, Cantao ME, Vasconcelos ATR, Nogueira MA, Hungria M (2013) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Appl Soil Ecol 72:49–61. doi:10.1016/j.apsoil.2013.05.021

    Article  Google Scholar 

  • Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stopnisek N, Gubry-Rangin C, Hofferle S, Nicol GW, Mandic-Mulec I, Prosser JI (2010) Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol 76:7626–7634. doi:10.1128/Aem.00595-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thion C, Prosser JI (2014) Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol Ecol 90:380–389. doi:10.1111/1574-6941.12395

    CAS  PubMed  Google Scholar 

  • Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364. doi:10.1111/j.1462-2920.2007.01563.x

    Article  CAS  PubMed  Google Scholar 

  • Vinhal-Freitas IC, Ferreira AS, Corrêa GF, Wendling B (2012) Land use impact on microbial and biochemical indicators in agroecosystems of the Brazilian cerrado. Vadose Zone J 12:1–8

    Google Scholar 

  • Weber EB, Lehtovirta-Morley LE, Prosser JI, Gubry-Rangin C (2015) Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota. FEMS Microbiol Ecol 91 doi:10.1093/femsec/fiv001

  • Wertz S, Leigh AKK, Grayston SJ (2012) Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. FEMS Microbiol Ecol 79:142–154. doi:10.1111/j.1574-6941.2011.01204.x

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Zhang Y, Luo W, Wang Y (2014) Root colonization and effect of biocontrol fungus Paecilomyces lilacinus on composition of ammonia-oxidizing bacteria, ammonia oxidizing archaea and fungal populations of tomato rhizosphere. Biol Fertil Soils 51:343–351. doi:10.1007/s00374-014-0983-y

    Article  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045. doi:10.1038/ismej.2011.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Mr. Fabiano Bielefeld Nardotto, owner of the Tabapuã dos Pireneus farm, for allowing our free movement around the farm and collection of soil samples, as well as providing information about soybean cultivation. The authors also thank Dr. Plínio de Camargo, who performed the isotopic analysis in the CENA laboratory at the University of São Paulo (USP). This work was supported by grants from the National Council of Technological and Scientific Development (CNPq), Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), and Foundation for Research Support of Distrito Federal (FAP-DF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Krüger.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Gravimetric soil water content. Boxplot created by R version 3.0.2 with the ggplot2 library. Letters and corresponding colors correspond to significant differences among groups after the Tukey–Kramer post hoc test. (PDF 845 kb)

Fig. S2

Satellite view and photographs of the sample site on the Tabapuã dos Pireneus Farm. a Schematic representation of the sampling design on a Google Earth picture from the sample site. 1–3 represent composite samples for molecular analysis. bf Photos of the soil collection sites. b Undisturbed Campo sujo site, cf Soybean site at four different time points: c after 9 months of natural fallow, d 1 month after fertilization, e during the blossom stage of soybean development, f soybean plants with beans. (PDF 532 kb)

Fig. S3

Relationship between soil δ13C and δ15N in per mille. Each point represents samples from each soil condition, marked with different symbols. (PDF 879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catão, E.C.P., Lopes, F.A.C., Rubini, M.R. et al. Short-term impact of soybean management on ammonia oxidizers in a Brazilian savanna under restoration as revealed by coupling different techniques. Biol Fertil Soils 52, 401–412 (2016). https://doi.org/10.1007/s00374-015-1086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1086-0

Keywords

Navigation