Skip to main content

Advertisement

Log in

Nitrogen cycling in tropical and temperate savannas

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Savannas are the most common vegetation type in the tropics and subtropics, ranging in physiognomy from grasslands with scattered woody plants to woodlands with heterogeneous grass cover. Productivity and organic matter turnover in savannas are controlled by interactions between water and nutrient availability, and this basic environmental structure is modified by fire frequency and land management practices. We compared temperate and tropical savannas in order to understand the strength of nitrogen (N) limitation of productivity. American tropical and temperate savannas are N limited systems, and the N cycle differs according to the woody plant density, fire frequency, land use change, N deposition and N fixation. Grazing and conversion to pasture have been the predominant land-use changes in most savannas. In the Cerrado and the Llanos tropical savannas, intensified use of fire for pasture management is leading to decreased woody plant density. Oppositely, in the Chaco and North American temperate savannas, fire suppression and grazing are leading to increases in woody density. In addition, the higher soil P availability in the Gran Chaco and the higher N deposition in North American savannas may be contributing to increases of N cycling and net productivity rates. Some aspects of the N budget for savannas of the American continent are still unclear and require further analysis to determine rates of N fixation, and to understand how spatial and temporal soil heterogeneity control N fluxes through soil solution and into streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbadie L., Mariotti A., Menaut J. (1992) Independence of savanna grasses from soil organic matter for their nitrogen supply. Ecology 73(2): 608–613

    Google Scholar 

  • Abril A., Bucher E.H. (1999) The effects of overgrazing on soil microbial community and fertility in the Chaco dry savannas of Argentina. Appl. Soil Ecol. 12: 159–167

    Google Scholar 

  • Aerts R., Chapin F.S. (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30: 1–67

    CAS  Google Scholar 

  • Andrade Z., Cuenca G., Escalante G. (1996) Preliminary studies on mycorrhizal status and morphology of arbuscular mycorrhizae of some native plant species from La Gran Sabana, Venezuela. In: Azcon-Aguilar C., J.M. Barea (eds), Proceedings of the Fourth European Symposium on Mycorrhizas. European Commission, Brussel, pp. 67–70

    Google Scholar 

  • Archer S. 1989. Have Southern Texas savannas been converted to woodlands n recent history? The American Naturalist 134: 545–561

    Google Scholar 

  • Archer S. (1994) Woody plant encroachment into southwestern grasslands and savannas: rates, patterns, and proximate causes. In: Vavra M., Laycock W.A., Pieper R.D. (eds), Ecological Implications of Livestock Herbivory in the West. Society for Range Management, Denver USA, pp 13–68

    Google Scholar 

  • Archer S. (1995) Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: reconstructing the past and predicting the future. Ecoscience 2: 83–99

    Google Scholar 

  • Archer S., Boutton T.W., Hibbard K.A. (2001) Trees in grasslands: Biogeochemical consequences of woody plant expansion. In: Schimel D.S. (eds), Global Biogeochemical Cycles in the Climate System. Academic Press, San Diego

    Google Scholar 

  • Asner G.P., Martin R.E. (2004) Biogeochemistry of desertification and woody encroachment in grazing systems. In: Defries R., Asner G.P., Houghton R.A. (eds), Ecosystem Interactions with Land Use Change. American Geophysical Union, Washington, DC

    Google Scholar 

  • Asner G.P., Townsend A.R., Riley W., Matson P.A., Neff J.C., Cleveland C.C. (2001) Physical and biogeochemical controls of terrestrial ecosystems responses to nitrogen deposition. Biogeochemistry 54: 1–39

    CAS  Google Scholar 

  • Asner G.P., Archer S.A., Hughes R.F., Ansley J.N., Wessman C.A. (2003) Net changes in regional woody vegetation cover and carbon storage in North Texas rangelands, 1937–1999. Glob. Change Biol. 9: 316–335

    Google Scholar 

  • Asner G.P., Elmore A.J., Olander L.P., Martin R.E., Harris A.T. (2004) Grazing systems, ecosystem responses, and global change. Ann. Rev. Environ. Res. 29: 261–299

    Google Scholar 

  • Bailey R.G. (1996) Ecoregions: The Ecosystem Geography of the Oceans and Continents. Springer Verlag, New York, USA

    Google Scholar 

  • Barrios S., Gonzalez V. (1971) Rhizobial symbiosis in Venezuelan savannas. Plant Soil 34: 707–719

    Google Scholar 

  • Batmanian G.J. (1983) Efeitos do fogo sobre a produção primária e a acumulação de nutrientes do estrato rasteiro de um Cerrado. MSc. Thesis. Universidade de Brasília, Brasília, Brazil

  • van Berkum P., Day J.M. (1980) Nitrogenase activity associated with soil cores of grasses in Brazil. Soil Biol. Biochem. 12: 137–140

    Google Scholar 

  • Boddey R.M., Chalk P.M., Victoria R.L., Matsui E. (1984) Nitrogen-fixation by nodulated soybean ander tropical field conditions estimated by the N-15 isotope dilution technique. Soil Biol. Biochem. 16(6): 583–588

    CAS  Google Scholar 

  • Boddey R.M., Urquiaga S., Neves M.C.P., Suhet A.R., Peres J.R. (1990) Quantification of the contribution of N2-fixation to field-grown grain legumes – a strategy for the practical application of the N15 isotope dilution technique. Soil Biol. Biochem. 22: 649–655

    CAS  Google Scholar 

  • Boddey R.M., Döbereiner J. (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fert. Res. 42: 241–250

    CAS  Google Scholar 

  • Boddey R.M., Victoria R.L. (1986) Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N labeled organic matter and fertilizer. Plant Soil 90: 256–292

    Google Scholar 

  • Boddey R.M., Alves B.J.R. and Urquiaga S. 1996. Nutrient cycling and sustainability of improved pastures in the Brazilian Cerrados. In: Pereira R.C. and Nasser L.C.B. (eds), Proceedings of the 1st International Symposium on Tropical Savannas 24–29th March 1996. EMBRAPA-CPAC, Brasília, Brazil, pp. 33–38

  • Bononi V.L.R., Trufem S.F.B. (1983) Endomicorrizas vesículo arbusculares do cerrado da Reserva de Moji-Guaçú, São Paulo, Brasil. Rickia 10: 55–84

    Google Scholar 

  • Bourlière F., Hadley M. (1983) Present-day savannas: an overview. In: Bourlière F. (ed.) Tropical Savannas. Ecosystems of the World 13. Elsevier Scientific Publishing Company, Amsterdam, pp 1–17

    Google Scholar 

  • Bucher E.H., Schofield J. (1981) Economis assault on chagas disease. New Sci. 92:321–324

    Google Scholar 

  • Bustamante M.M.C., Martinelli L.A., Silva D.A., Camargo P.B., Klink C.A., Domingues T.F., Santos R.V. (2004) 15N natural abundance in woody plants and soils of the savannas of Central Brazil (Cerrado). Ecol. Appl. 14(4): S200–S213

    Google Scholar 

  • Bustamante M.M.C., Nardoto G.B., Martinelli L.A. (2004) Aspectos comparativos de ciclaje de nutrientes entre bosques amazónicos de terra-firme y sabanas tropicales (Cerrado brasileiro). In: Cabrera H.M. (ed.), Fisiologia Ecologica en Plantas: mecanismos e respuestas a Estrés en los ecosistemas. EUV Valparaíso, Chile, pp 189–205

    Google Scholar 

  • Cadisch G., Carvalho E.F., Suhet A.R., Vilela L., Soares W., Spain J.M., Urquiaga S., Giller K.E., Boddey R.M. 1994a. The importance of legume N2-fixation in sustainability of pastures in the Cerrados of Brazil. In: Proceedings of the International Grassland Congress. Palmerston North, New Zealand, pp. 1915–1918

  • Cadisch G., Schunke R.M., Giller K.E. (1994b) Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brazil. Trop. Grass. 28: 43–52

    Google Scholar 

  • Campelo A.B. 1976. Caracterização e especificidade de Rhizobium ssp. de leguminosas florestais, M.Sc. Thesis, Universidade Federal do Rio de Janeiro, Brazil

  • Cárdenas L., Rondón A., Johansson C. and Sanhueza E. (1993) Effects of soil moisture, temperature, and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils. J. Geophys. Res. 98: 14783–14790

    ADS  Google Scholar 

  • Chacón P., López-Hernández I.D. and Lamotte M. (1991) Le cycle de l’azote dans une savane à Trachypogon au centre du Venezuela. Rev. Ecol. Biol. Sol 28: 67–75

    Google Scholar 

  • Cleveland C.C., Townsend A.R., Schimel D.S., Fisher H., Howarth R.W., Hedin L.O., Perakis S.S., Latty E.F., Von Fischer J.C., Elseboard A., Wasson M.F. (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob. Biogeochem. Cycles 13: 623–645

    CAS  ADS  Google Scholar 

  • Cuenca G., Lovera M. (1992) Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Can. J. Bot 70: 73–79

    Google Scholar 

  • Crutzen P., Andreae M.O. (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250: 1669–1678

    CAS  ADS  PubMed  Google Scholar 

  • D’Antonio C.M., Vitousek P.M. (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann. Rev. Ecol. Syst. 23: 63–87

    Google Scholar 

  • Davidson E.A., Hart S.C., Firestone M.K. (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73: 1148–1156

    Google Scholar 

  • Davidson E.A., Keller M., Erickson H.E., Verchot L.V., Veldkamp E. (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxide. BioScience 50: 667–680

    Google Scholar 

  • Davidson E.A., Bustamante M.M.C., Pinto A.S. (2001) Emissions of nitrous oxide and nitric oxide from soils of native and exotic ecosystems of the Amazon and Cerrado regions of Brazil. Sci. World 1 (S2): 312–319

    Google Scholar 

  • Döbereiner J., Campelo A.B. (1977) Importance of legumes and their contribution to tropical agriculture. In: Hardy R.W.F., Gibson A.H. (eds), A Treatise of Dinitrogen Fixation. Section IV: Agronomy and Ecology. Wiley & Sons, New York, pp 191–220

    Google Scholar 

  • Eiten G. (1972) The Cerrado vegetation of Brazil. Bot. Rev. 38: 201–341

    Google Scholar 

  • Faria S.M., Franco A.A., Jesus R.J., Menandro S., Baitello J.B., Mucci E.S.F., Döbereiner J. & Sprent J.I. (1984) New nodutaling legume trees from south-east Brazil. New Phytol. 98: 317–328

    Google Scholar 

  • Felfili J.M., Silva Jr. M.C., Rezende A.V., Machado J.W.B., Walter B.M.T., Silva P.E.N., Hay J.D. (1992) Análise comparativa da florística e fitossociologia da vegetação arbórea do cerrado sensu stricto na Chapada Pratinha, D.F. Brasil. Acta Bot. Brasilica 6: 27–84

    Google Scholar 

  • Firestone M.K., Davidson E.A. (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Wiley, New York, pp. 7–21

    Google Scholar 

  • Frost P., Medina E., Menaut J.C., Solbrig O., Swift M. and Walker B. 1986. Responses of Savannas to Stress and Disturbance. Biology International, Special Issue 10. IUBS, Paris, France

  • Galloway J.N., Dentener F.J., Capone D.G., Boyer, E.W., Howarth R.W., Seitzinger S.P., Asner, G.P., Cleveland C.C., Green P., Holland E., Karlo D.M., Michaels A.F., Porter J.H., Townsend A.R., Vörösmarty C. (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226

    CAS  Google Scholar 

  • Geesing D., Felker P., Bingham R.L. (2000) Influence of mesquite (Prosopis glandulosa) on soil nitrogen and carbon development: implications for global carbon sequestration. J. Arid Environ. 46: 157–180

    Google Scholar 

  • Giller K.E., Day J.M. (1985) Nitrogen fixation in the rhizosphere: significance in natural and agricultural systems. In: Fitter A.H. (eds) Ecological Interactions in Soils. Blackwell Scientific Publishers, London

    Google Scholar 

  • Goedert W.J. (1983) Management of Cerrado soils: a review. J. Soil Sci. 34: 405–428

    CAS  Google Scholar 

  • Gonzalez C., Abril A., Acosta M. (1999) Efecto del fuego sobre la fertilidad edafica y las comunidades microbianas en el Chaco occidental argentino. Ecol. Austral 9(12): 3–10

    Google Scholar 

  • Gonzalez C.C., Albanesi A., Studdert G.A., Knust C. (2001) Comportamiento de algunas propriedades del suelo en una sabana del Chaco semiarido Occidental bajo distintas frecuencias de fuego. Ciência Del Suelo 19(2): 92–100

    CAS  Google Scholar 

  • Hibbard K.A., Schimel D.S., Archer S., Ojima D.S., Parton W. (2003) Grassland to woodland transitions: Integrating changes in landscape structure and biogeochemistry. Ecol. Appl. 13:911–926

    Google Scholar 

  • Hibbard K.A., Archer S., Schimel D.S., Valentine D.W. (2001) Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82: 1999–2011

    Google Scholar 

  • Hoffmann W.A. and Jackson R.B.(2000) Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. Journal of Climate 13(9): 1593–1602

    ADS  Google Scholar 

  • Huntley B. and Walker B.H. 1982. Ecology of Tropical Savannas. Springer, Berlin, 671 pp

  • Israel D.W. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 84(3):835–840

    Article  PubMed  CAS  Google Scholar 

  • Izaguirre-Mayoral M.L., Carballo O., Flores S., Sicardi de Mallorca M., Oropeza T. (1992) Quantitative analysis of the symbiotic N2-fixation, non-structural carbohydrates and chlorophyll content in sixteen native legume species collected in different savanna sites. Symbiosis 12: 293–312

    CAS  Google Scholar 

  • Johansson C., Sanhueza E. (1988) Emission of NO from savanna soils during rainy season. J. Geophys. Res. 93: 14193–14198

    CAS  ADS  Google Scholar 

  • Johnson H.B., Mayeux H.S. (1990) Prosopis glandulosa and the nitrogen balance of rangelands: extent and occurrence of nodulation. Oecologia 84: 176–185

    Google Scholar 

  • Kauffmann J.B., Cummings D.L., Ward D.E. (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J. Ecol. 82: 519–531

    Google Scholar 

  • Kichel A.N., Miranda C.H.B., Macedo M.C. (1996) Conventional and multiple cropping systems of upland rice for reclamation of degraded Brachiaria decumbens pastures. In: Pereira R.C., Nasser L.C.B. (eds), Proceedings of the 1st International Symposium on Tropical Savannas. EMBRAPA-CPAC, Brasília, Brazil, pp 443–445

    Google Scholar 

  • Le Mare P.H., Pereira J., Goedert W.J. (1987) Effects of green manure on isotopically exchangeable phosphate in a dark-red latosol in Brazil. J. Soil Sci. 38:199–209

    CAS  Google Scholar 

  • Leitão M.R.S.M.M. (1997) Fixação biológica do nitrogênio por espécies arbóreas. In: Vargas M.A.T., Hungria M. (eds), Biologia dos solos dos Cerrados. EMBRAPA-CPAC, Brasília, Brazil, pp 155–186

    Google Scholar 

  • Levine J.S., Winstead E.L. Parsons D.A.B., Scholes M.C., Scholes R.J., Cofer III W.R., Cahoon D.R., Sebacher D.I. (1996) Biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) from savannas in South Africa: the impact of wetting and burning. J. Geophys. Res. 101: 23689–23697

    CAS  ADS  Google Scholar 

  • Loureiro M.F., Boddey R.M. (1988) Balanço de nitrogênio em quarto gramíneas do gênero Brachiaria. Pesq. Agropec. Bras. 23: 1343–1353

    Google Scholar 

  • Macedo M.C.M. (1995) Pastagens no ecossistema Cerrados: pesquisa para o desenvolvimento sustentável. In: de Andrade RP, Barcellos AO, da Rocha CMC (eds), Proceedings of the Simpósio sobre pastagens nos ecossistemas brasileiros: pesquisas para o desenvolvimento sustentável. Sociedade Brasileira de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil, pp 28–62

    Google Scholar 

  • Magalhães F.M.M., Magalhães L.M.S., Oliveira L.A., Döbereiner J. (1982) Ocorrência de de nodulação em leguminosas florestais de terra firme nativas da região de Manaus. Acta Bot. 12: 509–514

    Google Scholar 

  • Markewitz D., Davidson E.A., Figueiredo R.O., Victoria R.L. and Krusche A.V. (2001). Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410: 802–805

    PubMed  CAS  ADS  Google Scholar 

  • Martin R.E., Asner G.P., Ansley R.J., Mosier A.R. (2003) Effects of woody vegetation encroachment on soil nitrogen oxide emissions in a temperate savanna. Ecol. Appl. 13(4): 897–910

    Google Scholar 

  • Mazzarino M.J., Buffa E., Oliva L., Nuñez A., Nunez G. (1991) Nitrogen mineralization and soil fertility in the dry Chaco ecosystem (Argentina). Soil Sci. Soc. Am. 55(2): 515–522

    Article  CAS  Google Scholar 

  • Mazzarino M.J., Oliva L., Abril A., Acosta M. (1991) Factors affecting nitrogen dynamics in a semiarid woodland (Dry Chaco, Argentina). Plant Soil 138: 85–98

    CAS  Google Scholar 

  • McKeon G.M., Day K.A., Howden S.M., Mott J.J., Orr D.M., Scattini W.J., Weston E.J. (1991) Northern Australian savannas: management for pastoral production. In: Werner P.A. (eds), Savanna Ecology and Management. Blackwell Scientific Publications, Oxford UK, pp 11–28

    Google Scholar 

  • Medina E. (1993) Mineral nutrition: tropical savannas. Prog. Bot. 54: 237–253

    CAS  Google Scholar 

  • Medina E. (1982) Nitrogen balance in the Trachypogon grasslands of Central Venezuela. Plant Soil 67: 305–314

    CAS  Google Scholar 

  • Medina E. and Bilbao B. 1991. Significance of nutrient relations and symbiosis for the competitive interactions between grasses and legumes in a tropical savanna. In: Esser G. and Overdieck E. eds, Modern Ecology Basic and Applied Aspects. Elsevier Publ. Co., Amsterdam Netherlands, pp. 295–320

  • Medina E., Izaguirre M.L. (2004) N2-fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter. Trop. Ecol. 45: 87–95

    CAS  Google Scholar 

  • Medina E. (1987) Nutrients; requirements, conservation and cycles of nutrients in the herbaceous layer. In: Walker B.H. ed., Determinants of Tropical Savannas. IR Press, Oxford UK, pp. 39–65

    Google Scholar 

  • Miranda J.C.C., Miranda L.N. (1996) Efeito de fungos micorrízicos arbusculare nativos de cerrado no crescimento da soja adubada com nitrogênio ou inoculada com Rhizobium. In: Pereira R.C., Nasser L.C.B. (eds), Proceedings of the 1st International Symposium on Tropical Savannas. EMBRAPA-CPAC, Brasília Brazil, pp. 393–395

    Google Scholar 

  • Miranda H.S., Bustamante M.M.C., Miranda A.C. (2003) The fire factor. In: Oliveira O.S., Marquis R.J. (eds), The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, USA, pp 55–68

    Google Scholar 

  • Miranda H.S., Rocha e Silva E.P. and Miranda A.C. 1996. Comportamento do fogo em queimadas de campo sujo. In: Miranda H.S., Saito C.H. and Dias B.F.S. (Orgs) Impactos de Queimadas em áreas de cerrado e restinga. ECL/UnB, Brasília DF Brazil, pp. 1–10

  • Mistry J (2000) World Savannas: Ecology and Human Use. Pearson Education Limited, Great Britain

    Google Scholar 

  • Montes R., San Jose J.J. (1989) Chemical composition and nutrient loading by precipitation in the Trachypogon savannas of the Orinoco llanos, Venezuela. Biogeochemistry 7: 241–256

    CAS  Google Scholar 

  • Morello J., Saraiva-Toledo C. (1959) El bosque chaqueño II. Ganadería y el bosque en el oriente d Salta. Revista Agronômica Del Noroeste Argentino 3:209–258

    Google Scholar 

  • NADP (2002) National Atmospheric Deposition Program (NRSP-3)/ National Trends Network. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins Colorado

    Google Scholar 

  • Nardoto G.B., Bustamante M.M.C. (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesq. Agropec. Bras. 38(8): 955–962

    Google Scholar 

  • Nardoto G.B., Bustamante M.M.C., Pinto A.S. and Klink C.A. (2006). Nutrient use efficiency at e cosystem and species level in savanna areas of Central Brazil and impacts of fire. J. Trop. Ecol. 22 (2):191–201.

    Google Scholar 

  • Neff J.C., Keller M., Holland E.A., Weitz A.W., Veldkamp E. (1995) Fluxes of nitric oxide from soils following the clearing and burning of a secondary tropical rain forest. J. Geophys. Res. 100: 25913–25922

    ADS  Google Scholar 

  • Nobre A.D. 1994. Nitrous oxide emissions from tropical soils. Ph.D thesis, University of New Hampshire, New Hampshire, USA

  • Oliva L., Mazzarino M.J., Nuñez G., Abril A., Acosta M. (1993) Dinamica del nitrogeno y del agua del suelo en un desmonte selectivo en el Chaco arido argentine. Pesq. Agropec. Bras. 28(6): 709–718

    Google Scholar 

  • Olson J.S., Watts J.A., Allison L.J. (1983) Carbon in Live Vegetation of Major World Ecosystems. Report ONRL-5862. Oak Ridge National Laboratory, Oak Ridge Tenn

    Google Scholar 

  • Pacheco M., Donoso L., Sanhueza E. (2004) Soluble organic nitrogen in Venezuelan rains. Tellus 56: 393–395

    Google Scholar 

  • Parron L.M. 2004. Aspectos da ciclagem de nutrients em função do gradiente topográfico em uma mata de galeria no Distrito Federal. Ph.D. thesis, University of Brasília, Brasília, 187 pp

  • Parsons D.A.B., Scholes M.C., Scholes R.J., Levine J.S. (1996) Biogenic NO emissions from savanna soils as a function of fire regime, soil type, soil nitrogen, and water status. J. Geophys. Res. 101: 23683–23688

    CAS  ADS  Google Scholar 

  • Pinto A.S., Bustamante M.M.C., Kisselle K., Burke R., Zepp R., Viana L.T., Varella R.F., Molina M. (2002) Soil emissions of N2O, NO and CO2 in Brazilian Savannas: effects of vegetation type, seasonality and prescribed fires. J. Geophys. Res. 107: 8089–8096

    Google Scholar 

  • Pinto A.S., (2003) Contribuição dos solos do cerrado do Brasil Central para as emissões de gases traço (CO2, N2O eNO): sazonalidade, queimadas prescritase manejo de pastagens degradadas. Ph.D. thesis, University of Brasília, Brasília

    Google Scholar 

  • Pinto A.S., Bustamante M.M.C., Silva M.R.S.S., Kisselle K.W., Brossard M., Kruger R., Zepp R.G. and Burke R.A. (2006). Effects of different treatments of pasture restoration on soil trace gas emissions in the Cerrados of Central Brazil.Earth Interactions 10 (paper 1): 1–26

    MATH  ADS  Google Scholar 

  • Pivello V.R., Coutinho L.M. (1992) Transfer of macro-nutrients to the atmosphere during experimental burnings in an open cerrado (Brazilian savanna). J. Trop. Ecol. 8: 487–497

    Article  Google Scholar 

  • Poth M.A., Anderson I.C., Miranda H.S., Miranda A.C., Riggan P.J. (1995) The magnitude and persistence of soil NO, N2O, CH4, and CO2 fluxes from burned tropical savanna in Brazil. Glob. Biogeochem. Cycles 9: 503–513

    CAS  ADS  Google Scholar 

  • Prieto-Fernandez A., Villar M.C., Carballas M., Carballas T.T. (1993) Short-term effects in a wildfire on the nitrogen status and its mineralization kinetics in an Atlantic forest soil. Soil Biol. Biochem. 25(12): 1657–1664

    Google Scholar 

  • Reatto A., Correia J.R., Spera S.T. (1998) Solos do bioma Cerrado: aspectos pedológicos. In: Sano S.M., Almeida S.P. (eds), Cerrado: ambiente e flora. EMBRAPA-Cerrados, Brasília Brazil, pp 47–86

    Google Scholar 

  • Reis F.B., Jr., Mendes I.C., Hungria M. 2003. Contribuição agronômica da FBN. www.revistasafra.com.br/artigo, 14th Nov 2003

  • Resende J.C.F. 2001. A ciclagem de nutrientes em áreas de Cerrado e a influência de queimadas controladas. PhD Thesis, Universidade de Brasília, Brasília, Brazil

  • Robertson G.P., Rosswal T. (1986) Nitrogen in West Africa: the regional cycle. Ecol. Monog. 56: 43–72

    Google Scholar 

  • Rondón A, Johanson C, Sanhueza E (1993) Emission of nitric oxide from soils and termite nests in a Trachypogon savanna of the Orinoco basin. J. Atmos. Chem. 17: 293–306

    Google Scholar 

  • Rundel P.W., Nilsen E.T., Sharifi M.R., Virginia R.A., Jarrel W.M., Kohl D.H. and Shearer G.B. 1982. Seasonal dynamics of nitrogen cycling for Prosopis woodland in the Sonoran desert. Plant and Soil 67: 343–353

    CAS  Google Scholar 

  • Saminêz T.C.O. 1999. Efeito do sistema de cultivo, tensão de água, biomassa microbiana e temperatura do solo nos fluxos de CH4 e N2O em solos de Cerrados. MSc. Thesis, Universidade de Brasília, Brasília, Brazil

  • Sanhueza E., Crutzen P.J. (1998) Budgets of fixed nitrogen in the Orinoco savannah region: role of pyrodenitrification. Glob. Biogeochem. Cycles 12: 653–666

    CAS  ADS  Google Scholar 

  • Sanhueza E., Hao W.M., Scharffe D., Donoso L., Crutzen P.J. (1990) N2O and NO emissions from soils of the Northern Part of the Guayana Shield, Venezuela. J. Geophys. Res. 95: 22481–22488

    CAS  ADS  Google Scholar 

  • Santaella S.E. 1985. Fijación biológica de nitrógeno en sabanas de Trachypogon spp. BSc Thesis, Universidad Central de Venezuela, Caracas, Venezuela

  • Sarmiento G. 1983. Patterns of specific and phonological diversity in the grass community of the Venezuelan tropical savannas. J. Biogeogr. 10: 373–391

    Google Scholar 

  • Sarmiento G. (1984) The Ecology of Neotropical Savannas. Harvard Press, Cambridge USA

    Google Scholar 

  • Sarmiento G. (1996) Ecologia de pastizales y sabanas en America Latina. In: Sarmiento G, Cabido M (eds), Biodiversidad y Funcionamento de Pastizales y Sabanas em América Latina. CYTED y CIELAT, Venzeula

    Google Scholar 

  • Sato M.N., Garda A.A. and Miranda H.S. 1998. Effects of fire on the mortality of woody vegetation in Central Brazil. In: Viegas D.X. (ed.), Proceedings of the 14th Conference of Fire and Forest Meteorology II 16–20th Nov. 1998. University of Coimbra, Portugal, pp 1785–1792

  • Scholes R.J and Walker B.H. 1993. An African savanna: Synthesis of the Nylsvley study. Cambridge University Press, 318 pp

  • Schimel D.S. et al. (1997) Continental scale variability in ecosystems processes: models, data, and the role of disturbance. Ecol. Monogr. 67(2): 251–271

    Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree–grass interactions in savannas. Ann. Rev. Ecol. Syst. 28: 517–544

    Google Scholar 

  • Scholes R.J. and Hall D.O. 1996. The Carbon Budget of Tropical Savannas, Woodlands and Grasslands. In: Breymeyer A.L., Hall D.O., Melillo J.M. and Agren G.I. (eds), Global Change: Effects on Coniferous Forests and Grasslands. SCOPE 56. Wiley & Sons

  • SCS 1962. Soil Survey of Wilbarger County, Texas. 18, United States Department of Agriculture Soil Conservation Service, Fort Worth, TX

  • Sicardi de Malloorca M., Izaguirre-Mayoral M.L. (1993) A comparative evaluation of the symbiotic N2-fixation and physiological performance of thirty-six native legume species collected in a tropical savanna during the rainy and dry season. Symbiosis 16: 225–247

    Google Scholar 

  • Silva F. 1990. Compartilhamento de nutrientes em diferentes componentes da biomassa aérea em espécies arbóreas de um cerrado. MSc. Thesis, Departamento de Ecologia, Universidade de Brasília, Brasília

  • Singh J.S., Raghubanshi A.S., Singh R.S., Srivastava S.C. (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 3388: 499–500

    ADS  Google Scholar 

  • Siqueira K.P. 2001. Mineralização de nitrogênio em área de campo sujo:efeito do fogo. BSc. Thesis. Universidade de Brasília, Brasília, Brazil

  • Siqueira J.O., Colozzi Filho A., Oliveira E., Schenk N.C. (1989) Ocorrência de micorrizas vesículo-arbusculares em agro e ecossistemas naturais do Estado de Minas Gerais. Pesq. Agropec. Bras. 24: 1499–1506

    Google Scholar 

  • Solbrig O.T. 1991. Savanna Modeling for Global Change. Biology International Special Issue 24. IUBS, Paris, France

  • Solbrig O.T. (1996) The diversity of the savanna ecosystem. In: Solbrig O.T., Medina E., Silva J.A. (eds), Biodiversity and Savanna Ecosystem Processes. Springer Verlag, Heidelberg, Germany, pp. 1–27

    Google Scholar 

  • Sprent J.I., Geoghegan I.E., Whitty P.W., James E.K. (1996) Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighboring regions of Brazil. Oecologia 105: 440–446

    Google Scholar 

  • Stock J.B., Stock A.M., Mottonen J.M. (1990) Signal transduction in bacteria. Nature 344: 395–400

    PubMed  CAS  ADS  Google Scholar 

  • Thomazini L.I. (1974) Mycorrhiza in plants of the “Cerrado”. Plant Soil 41: 707–711

    Google Scholar 

  • Varella R.F., Bustamante M.M.C., Pinto A.S., Kisselle K.W., Santos R.V., Burke R.A., Zepp R.G., Viana L.T. (2004) Soil fluxes of CO2, CO, NO, and N2O from an old pasture and from native savanna in Brazil. Ecol. Appl. 14(4): S221-S231

    Google Scholar 

  • Verchot L.V., Davidson E.A., Cattânio J.H., Ackerman I.L., Erickson H.E., Keller M. (1999) Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Glob. Biogeochem. Cycles 13: 31–46

    CAS  ADS  Google Scholar 

  • Viana L.T. 2002. Comparação das dinâmicas de mineralização de nitrogênio, biomassa e estrutura das comunidades microbianas do solo emáreas de cerrado nativo e pastagem. MSc. Thesis. Universidade de Brasília, Brasília, Brazil

  • Vicentini K.R.C.F. 1999. História do fogo no Cerrado: uma análise palinológica. Ph.D. thesis, Departamento de Ecologia, Universidade de Brasília, Brasil

  • Villecourt P., Roose E. (1978) Charge en azote et en elements minéraux divers des eaux de pluie, de pluviolessivage et de drainage dans la savane de Lamto (Côte d’Ivoire). Rev. Ecol. Biol. Sol 15: 1–20

    CAS  Google Scholar 

  • Vitousek P.M. (1982) Nutrient cycling and nutrient use efficiency. Am. Nat. 119: 553–572

    Google Scholar 

  • Wahlen S.C., Phillips R.L., Fischer E.N. (2000) Nitrous oxide emission from an agricultural field fertilized with liquid lagoon swine effluent. Glob. Biogeochem. Cycles 14: 545–558

    ADS  Google Scholar 

  • Ward D.E., Sussott R.A., Kauffman J.B., Babbitt R.E., Cummings D.L., Dias B., Holben B.N., Kauffman Y.J., Setzer A.W. (1992) Smoke and fire characteristics for Cerrado and deforestation burns in Brazil: BASE-B experiment. J. Geophys. Res. 97: 14601–14619

    Article  ADS  Google Scholar 

  • Weitz A.M., Veldkamp E., Keller M., Neff J., Crill P.M. (1998) Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest. J. Geophys. Res.103: 28047–28058

    CAS  ADS  Google Scholar 

  • Winter W.H., Mott J.J., McLean R.W. 1989 Evaluation of management options for increasing the productivity of tropical savanna pastures 2. Legume species. Aust. J. Exp. Agricult. 29: 623–630

    Google Scholar 

  • Zitzer S.F., Archer S.R., Boutton T.W. (1996) Spatial variability in the potential for symbiotic N2 fixation by woody plants in a subtropical savanna ecosystem. J. Appl. Ecol. 33:1125–1136

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Luiz Martinelli (CENA, University of São Paulo) and Dr. Bob Howarth (Cornell University) for the organization of the workshop “N fluxes and processes in tropical and temperate systems” (Ubatuba, 15–18th March 2003) that motivated the preparation of this manuscript. We are grateful to Dr. Eric Davidson (Woods Hole Research Center), Dr. Daniel Markewitz (University of Georgia) and the reviewers for their very helpful comments and suggestions. G. Asner and M. Bustamante were supported by NASA LBA grant NCC5–675 (LC-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.M.C. Bustamante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, M., Medina, E., Asner, G. et al. Nitrogen cycling in tropical and temperate savannas. Biogeochemistry 79, 209–237 (2006). https://doi.org/10.1007/s10533-006-9006-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9006-x

Keywords

Navigation