Skip to main content
Log in

Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

An Erratum to this article was published on 23 April 2013

Abstract

Phosphorus availability is a major limiting factor for yield of most crop species. The objective of this study was to compare the solubilization of three sources of phosphorus (P) by different fungal isolates and to determine the possible mechanisms involved in the process. Talaromyces flavus (S73), T. flavus var flavus (TM), Talaromyces helicus (L7b) and T. helicus (N24), Penicillium janthinellum (PJ), and Penicillium purpurogenum (POP), fungal strains isolated from the rhizosphere of crops, are known to be biocontrol agents against pathogenic fungi. The P solubilization efficiency of these fungal strains in liquid media supplemented either with tricalcium phosphate (Ca3(PO4)2; PC), aluminum phosphate (AlPO4; AP), or phosphorite (PP) depended on the source of P and the fungal species. The type and concentration of organic acids produced by each species varied according to the source of available P. In the medium supplemented with PC, the highest proportion was that of gluconic acid, whereas in the media supplemented with the other P sources, the highest proportion was that of citric and valeric acids. This suggests that the release of these organic compounds in the rhizosphere by these microorganisms may be important in the solubilization of various inorganic P compounds. Results also support the hypothesis that the simultaneous production of different organic acids by fungi may enhance their potential for solubilizing insoluble phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Barroso CB, Pereira GT, Nahas E (2006) Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with different carbon a nitrogen source. Braz J Microbiol 37:434–438

    Article  CAS  Google Scholar 

  • Burgstaller W, Strasser H, Schinner F (1992) Solubilization of zinc oxide from filter dust with Penicillium simplicissimum; bioreactor, leaching and stoichiometry. Environ Sci Technol 26:340–346

    Article  CAS  Google Scholar 

  • Cunningham J, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 85:1451–1458

    Google Scholar 

  • Eckhardt FEW (1979) Über die Einwirkung heterotropher Mikroorganismen auf die Zersetzung silikatischer Minerale. Z Pflanzenerntihr Bodenkund 142:434–445

    Article  CAS  Google Scholar 

  • El-zouni IM (2008) Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.) plants. J Appl Sci Res 4:592–598

    Google Scholar 

  • Gadagi RS, Shin WS, Sa TM (2007) Malic acid mediated aluminum phosphate solubilization by Penicillium oxalicum CBPS-3F-Tsa isolated from Korean paddy rhizosphere soil. In: Velasuez E, Rodriguez-Barrueco C (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in plant and soil sciences, vol 102. Springer, Berlin, pp 286–290

    Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphorus uptake by the plants. Plant Soil 1:51–81

    Article  CAS  Google Scholar 

  • Gyaneshwar G, Kumar N, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms P. J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  • Harrison MJ, Pacha RE, Morita RY (1972) Solubilization of inorganic phosphates by bacteria isolated from Upper Klamath Lake Sediment. Limnol Oceanogr 17:50–57

    Article  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO4, with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    Article  CAS  Google Scholar 

  • Kang S, Chul GH, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr Sci 82:439–442

    CAS  Google Scholar 

  • Kpomblekou AK, Tabatabai MA (1994) Effect of organic acids on the release of phosphorus from phosphate rocks. Soil Sci 158:442–448

    Article  Google Scholar 

  • Lin T, Huang H, Shen F, Young C (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresour Technol 97:957–960

    Article  PubMed  CAS  Google Scholar 

  • Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilisation in E. coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    PubMed  CAS  Google Scholar 

  • McLaughlin MJ, Alston AM, Martin JK (1988) Phosphorus cycling in wheat-pasture rotations. II. The role of the microbial biomass in phosphorus cycling. Aust J Soil Res 26:333–342

    Article  Google Scholar 

  • Mehta A, Torma AE, Murr LE (1979) Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi. Biotechnol Bioeng 21:875–885

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  PubMed  CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sa NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, London, p 634

    Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O'Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Rodríguez A (2004) Hongos del suelo antagonistas de Sclerotinia sclerotiorum. Selección y estudio de potenciales agentes de biocontrol. Thesis, Universidad de Buenos Aires, Argentina pp 280

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol 52:527–560

    Article  CAS  Google Scholar 

  • Scheffer F, Schachtschabel P (1992) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart, p 46

    Google Scholar 

  • Shantaram MV, Saraswathy N (1985) Occurrence and activity of phosphate-solubilizing fungi from coconut plantation soils. Plant Soil 87:357–364

    Article  Google Scholar 

  • Stephen J, Jisha MS (2009) Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J Agric Sci 5:135–137

    Google Scholar 

  • Vassilev N, Fenice MI, Federici F (2004) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol Tech 10:585–588

    Article  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  PubMed  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Wakelin S, Warren R, Harvey P, Ryder M (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Xiao C, Chi R, Huang X, Zhang W, Qiu G, Wang D (2008) Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecol Eng 33:187–193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Larry Petersen for the critical review of this manuscript. This work was supported by the following institutions: Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológicas (ANCYPT), and Red BIOFAG CYTED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Martin Scervino.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00374-013-0811-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scervino, J.M., Mesa, M.P., Della Mónica, I. et al. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46, 755–763 (2010). https://doi.org/10.1007/s00374-010-0482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0482-8

Keywords

Navigation