Skip to main content

Advertisement

Log in

Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Plants produce and release in the surrounding soil, the so-called rhizosphere, a vast variety of secondary metabolites. Among them, flavonoids are the most studied, mainly for their role in the establishment of rhizobium–legume symbiosis; on the other hand, some studies highlight that they are also important in the plant strategies to acquire nutrients from the soil, for example, by acting on its chemistry. The scope of this review is to give a quick overview on the types and amounts of plant-released flavonoids in order to focus on their effects on soil activities that in turn can influence nutrient availability and so plant mineral nutrition; emphasis is given to the different nutrient cycles, soil enzyme, and soil bacteria activities, and their influence on soil macrofauna and roots of other plants. Finally, the possible outcome of the climate change on these processes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afolayan AJ, Meyer JJM (1997) The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. J Ethnopharmacol 57:177–181

    PubMed  CAS  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe In 15:334–340

    CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    PubMed  CAS  Google Scholar 

  • Akiyama K, Tanigawa F, Kashihara T, Hayashi H (2010) Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry 71:1865–1871

    PubMed  CAS  Google Scholar 

  • Alford EA, Perry LG, Qin B, Vivanco JM, Paschke MW (2007) A putative allelopathic agent of Russian knapweed occurs in invaded soils. Soil Biol Biochem 39:1812–1815

    CAS  Google Scholar 

  • Allard V, Robin C, Newton PCD, Lieffering M, Soussana JF (2006) Short and long-term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biol Biochem 38:1178–1187

    CAS  Google Scholar 

  • Alvey S, Bagayoko M, Neumann G, Buerkert A (2001) Cereal/legume rotation effects in two West African soils under controlled conditions. Plant Soil 231:45–54

    CAS  Google Scholar 

  • Aoki T, Akasaki T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity and biosynthesis. J Plant Res 113:475–488

    Google Scholar 

  • Badalucco L, Kuikman PJ (2001) Mineralization and immobilization in the rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 141–196

    Google Scholar 

  • Bagga S, Straney D (2000) Modulation of cAMP and phosphodiesterase activity by flavonoids which induce spore germination of Nectria haematococca MP VI (Fusarium solani). Physiol Mol Plant Pathol 56:51–61

    CAS  Google Scholar 

  • Bais HP, Walker T, Stermitz F, Hufbauer R, Vivanco J (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (+/−)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179

    PubMed  CAS  Google Scholar 

  • Bais HP, Vapachedu R, Gilroy S, Callaway R, Vivanco J (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    PubMed  CAS  Google Scholar 

  • Balbridge GD, O’Neill NR, Samac DA (1998) Alfalfa (Medicago sativa L.) resistance to root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol Biol 38:999–1010

    Google Scholar 

  • Baldwin IT, Olson RK, Reiners WA (1983) Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol Biochem 15:419–423

    CAS  Google Scholar 

  • Barnhisel RI, Bertsch PM (1989) Chlorite and hydroxyl-interlayered vermiculite and smectite. In: Dixon JB, Weed SB (eds) Minerals in Soil Environments, vol Book series n°1, 2nd edn. Soil Sci Soc Am, Madison, pp 729–788

    Google Scholar 

  • Barto EK, Cipollini D (2009) Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere 76:71–75

    PubMed  Google Scholar 

  • Barz W (1969) Stoffwechsel aromatischer Pflanzeninhaltstoffe I-Über den Umsatz von Isoflavonen und Cumostennen in Cicer arietinum L. und Phaseolus aureus Roxb. Z Naturforsch PT Teil B 24:234–239

    CAS  Google Scholar 

  • Barz W (1970) Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9:1745–1749

    CAS  Google Scholar 

  • Barz W, Hoesel W (1975) Metabolism of flavonoids. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman and Hall, London, pp 916–969

    Google Scholar 

  • Barz W, Adamek C, Berlin J (1970) The degradation of formononetin and daidzein in Cicer arietinum and Phaseolus aureus. Phytochemistry 9:1735–1744

    CAS  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    CAS  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    Google Scholar 

  • Becard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microb 58:821–825

    CAS  Google Scholar 

  • Benoit L, Berry A (1997) Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol Plant 99:588–593

    CAS  Google Scholar 

  • Benoit RE, Starkey RL (1968a) Inhibition of decomposition of cellulose and some other carbohydrates by tannin. Soil Sci 105:291–296

    CAS  Google Scholar 

  • Benoit RE, Starkey RL (1968b) Enzyme inactivation as a factor in the inhibition of decomposition of organic matter by tannins. Soil Sci 105:203–208

    CAS  Google Scholar 

  • Bhandari A, Orlow AM, Weber WJ Jr (1998) Engineering the immobilization of couplable organics in soils and the subsurface. Proceedings of the 1998 Conference on Hazardous Waste Research, Snowbird, Utah, May 18–21.

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins—a current perspective. Biodegradation 9:343–357

    PubMed  CAS  Google Scholar 

  • Blair AC, Hanson BD, Brunk GR, Marrs RA, Westra P, Nissen SJ, Hufbauer RA (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol Lett 8:1039–1047

    Google Scholar 

  • Blair AC, Nissen SJ, Brunk GR, Hufbauer RA (2006) A lack of evidence for an ecological role of the putative allelochemical (±) catechin in spotted knapweed invasion success. J Chem Ecol 32:2327–2331

    PubMed  CAS  Google Scholar 

  • Blum U (1998) Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:793–800

    Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soil. Soil Biol Biochem 20:793–800

    CAS  Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs an experimental model. Crit Rev Plant Sci 18:673–693

    CAS  Google Scholar 

  • Bolanos-Vasquez MC, Werner D (1997) Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris. MPMI 10:339–346

    CAS  Google Scholar 

  • Bollag JM, Dec J, Huang PM (1997) Formation mechanisms of complex organic structures in soil habitats. Adv Agron 63:237–266

    Google Scholar 

  • Borner H (1959) The apple replant problem I. The excretion of phlorizin from apple root residues. Contrib Boyce Thompson Inst 20:39–56

    CAS  Google Scholar 

  • Borner H (1960) Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot Rev 26:393–424

    CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230. doi:10.1016/j.tplants.2007.03.009

    PubMed  CAS  Google Scholar 

  • Bradley RL, Titus BD, Preston CP (2000) Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol Biochem 32:1227–1240

    CAS  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    PubMed  CAS  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    PubMed  CAS  Google Scholar 

  • Cabrerizo PM, Gonzalez EM, Aparicio-Tejo PM, Arrese-Igor C (2001) Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiol Plantarum 113:33–40

    CAS  Google Scholar 

  • Caetano-Anolles G, Crist-Estes DK, Bauer DW (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169

    PubMed  CAS  Google Scholar 

  • Caldwell DE, Caldwell SJ, Tiedje JM (1975) An ecological study of the sulfur-oxidizing bacteria from the littoral zone of a Michigan lake and a sulfur spring in Florida. Plant Soil 43:101–114

    Google Scholar 

  • Carbelleira A (1980) Phenolic inhibitors in Erica australis L. and the associated soil. J Chem Ecol 6:593–596

    Google Scholar 

  • Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43

    CAS  Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piche Y, Vierheilig H (2006) Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257–266

    CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    CAS  Google Scholar 

  • Ceulemans R, Mousseau M (1994) Tansley review no-71—effects of elevated atmospheric CO2 on woody-plants. New Phytol 127:425–446

    Google Scholar 

  • Chabot S, Belrhlid R, Chenevert R, Piche Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora-margarita Becker and Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytol 122:461–467

    CAS  Google Scholar 

  • Chang C, Suzuki A, Kumari S, Tamura S (1969) Chemical studies on clover sickness. II. Biological functions of isoflavonoids and related compounds. Agri Biol Chem 33:398–408

    CAS  Google Scholar 

  • Chaves N, Sosa T, Escudero JC (2001) Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J Chem Ecol 27:623–631

    PubMed  CAS  Google Scholar 

  • Cheng WX, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    CAS  Google Scholar 

  • Cho MJ, Harper JE (1991) Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots. Plant Physiol 95:435–442

    PubMed  CAS  Google Scholar 

  • Cook R, Tiller SA, Mizen KA, Edwards R (1995) Isoflavonoid metabolism in resistant and susceptible cultivars of white clover infected with the stem nematode Ditylenchus dipsaci. J Plant Physiol 146:348–354

    CAS  Google Scholar 

  • Cooper JE (2004a) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    CAS  Google Scholar 

  • Cooper JE (2004b) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365. doi:10.1111/j.1365-2672.2007.03366.x

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    CAS  Google Scholar 

  • Curtin D, Syers JK (1990) Mechanisms of sulfate adsorption by two tropical soils. J Soil Sci 41:295–304

    CAS  Google Scholar 

  • D’Arcy-Lameta A (1986) Study of soybean and lentil root exudates. II. Identification of some polyphenolic compounds, relation with plantlet physiology. Plant Soil 92:113–123

    Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49

    CAS  Google Scholar 

  • Dakora FD, Phillips DA (1996) Diverse Functions of Isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49:1–20

    CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    CAS  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993a) Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol 101:819–824

    PubMed  CAS  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993b) Common bean root exudates contain elevated levels of daidzein and coumestrol in response to Rhizobium inoculation. Mol Plant-Microbe Interact 6:665–668

    CAS  Google Scholar 

  • Datta Sc, Chatterjee AK (1980) Allelopathy in Polygonum orientale: inhibition of seed germination and seedling growth of mustard. Comp Physiol Ecol 5:54–59

  • de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry principles and applications. Plenum publishing corp, New York, pp 23–72

    Google Scholar 

  • de Leeuw JW, Versteegh GJM, van Bergen PF (2006) Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol 182:209–233

    Google Scholar 

  • Dec J, Bollag J-M (2000) Phenoloxidase-mediated interactions of phenols and anilines with humic materials. J Environ Qual 29:665–676

    CAS  Google Scholar 

  • Dec J, Haider K, Bollag J-M (2001) Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerization. Soil Sci 166:660–671

    CAS  Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant-response to elevated carbon-dioxide. Nature 364:616–617

    CAS  Google Scholar 

  • Dick RP (1994) Soil enzyme activity as indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special Publication 35, Madison, pp 107–124, Soil Sci Soc Am

    Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CABI, Wallingford, pp 121–156

    Google Scholar 

  • Dick WA, Cheng L, Wang P (2000) Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol Biochem 32:1915–1919

    CAS  Google Scholar 

  • Du SS, Zhang HM, Bai CQ, Wang CF, Liu QZ, Liu ZL, Wang YY, Deng ZW (2011) Nematocidal flavone-C-glycosides against the root-knot nematode (Meloidogyne incognita) from Arisaema erubescens tubers. Molecules 16:5079–5086

    PubMed  CAS  Google Scholar 

  • Duke SO, Blair AC, Dayan FE, Johnson RD, Meepagala KM, Cook D, Bajsa J (2009a) Is (-)-catechin a novel weapon of spotted knapweed (Centaurea stoebe)? J Chem Ecol 35:141–153

    PubMed  CAS  Google Scholar 

  • Duke SO, Dayan FE, Bajsa J, Meepagala KM, Hufbauer RA, Blair AC (2009b) The case against (-)-catechin involvement in allelopathy of Centaurea stoebe (spotted knapweed). Plant Signal Behav 4:422–424

    PubMed  CAS  Google Scholar 

  • Edwards R, Mizen T, Cook R (1995) Isoflavonoid conjugate accumulation in the roots of lucerne (Medicago sativa) seedlings following infection by the stem nematode (Ditylenchus dipsaci). Nematologica 41:51–66

    Google Scholar 

  • El Hadrami A, Adam LR, Daayf F (2011) Biocontrol treatments confer protection against Verticillium dahliae infection of potato by inducing antimicrobial metabolites. Mol Plant-Microbe Interact 24:328–335

    PubMed  CAS  Google Scholar 

  • El Hajji H, Nkhili E, Tomao V, Dangles O (2006) Interactions of quercitin with iron and copper ions: complexation and autoxidation. Free Radic Res 40:303–320

    PubMed  CAS  Google Scholar 

  • Elzinga EJ, Peak D, Sparks DL (2001) Spectroscopic studies of Pb(II)-sulfate interactions at the goethite-water interface. Geochim Cosmochim Acta 65:2219–2230

    CAS  Google Scholar 

  • Erickson AJ, Ramsewak RS, Smucker AJ, Nair MG (2000) Nitrification inhibitors from the roots of Leucaena leucocephala. J Agr Food Chem 48:6174–6177

    CAS  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Google Scholar 

  • Field JA, Lettinga G (1992) Toxicity of tannin compounds to microorganisms. In: Hemingway RW, Laks PE (eds) Plant polyphenols. Plenum Press, New York, pp 673–692

    Google Scholar 

  • Fierer N, Schimel JP, Cates RG, Zou J (2001) Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biol Biochem 33:1827–1839

    CAS  Google Scholar 

  • Fitter AH (2003) Making allelopathy respectable. Science 301:1337–1338

    PubMed  CAS  Google Scholar 

  • Fottrell PF, O’Connor J, Masterson CL (1964) Identification of the flavonoid myricetin in legume seeds and its toxicity to nodule bacteria. Irish J Agric Res 3:246–249

    CAS  Google Scholar 

  • Furubayashi A, Hiradate S, Fujii Y (2007) Role of catechol structure in the adsorption and transformation reactions of L-DOPA in soils. J Chem Ecol 33:239–250

    PubMed  CAS  Google Scholar 

  • Gallet C, Keller C (1999) Phenolic composition of soil solutions: comparative study of lysimeter and centrifuge waters. Soil Biol Biochem 31:1151–1160

    CAS  Google Scholar 

  • Gallet C, Lebreton P (1995) Evolution of phenolic patterns from plants, litters and soils in a mountain bilberry-spruce forest. Soil Biol Biochem 27:157–165

    CAS  Google Scholar 

  • Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling: a review. Agron Sustain Dev 27:59–68

    CAS  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15:7907–7922

    PubMed  CAS  Google Scholar 

  • Ghosal S, Kumar Y, Chakrabarti GK, Lal J, Singh SK (1986) Parasitism of Imperata cylindrical on Pancratium biflorum and the concomitant changes in the host species. Phytochem 25:1097–1102

    CAS  Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Roemheld V, Kandeler E (2007a) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    CAS  Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E (2007b) Atmospheric CO2 and the N-nutritional status modifies nodulation, nodule-carbon supply and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    CAS  Google Scholar 

  • Hartley A, Barger N, Belnap J, Okin GS (2007) Dryland ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, pp 271–308

    Google Scholar 

  • Hartwig U, Phillips DA (1991) Release and modification of nod gene inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807

    PubMed  CAS  Google Scholar 

  • Hartwig UA, Joseph CM, Phillips DA (1991) Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol 95:797–803

    PubMed  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    PubMed  Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250

    CAS  Google Scholar 

  • He WM, Feng Y, Ridenour WM, Thelen GC, Pollock JL, Diaconu A, Callaway RM (2009) Novel weapons and invasion: biogeographic differences in the competitive effects of Centaurea maculosa and its root exudate (±) catechin. Oecologia 159:803–815

    PubMed  Google Scholar 

  • Hens M, Hocking PJ (2004) An evaluation of the phosphorus benefits from grain legumes in rotational cropping using 33P isotopic dilution. In: New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress’. Australian Society of Agronomy. http://www.cropscience.org.au/icsc2004/poster/2/5/4/1190_hockingp.htm. Last accessed 27 September 2011

  • Hernes PJ, Hedges JI (2000) Determination of condensed tannin monomers in plant tissues, soils, and sediments by capillary gas chromatography of acid depolymerization extracts. Anal Chem 72:5115–5124

    Google Scholar 

  • Hocher V, Auguy F, Argout X, Laplaze LT, Franche C, Bogusz D (2006) Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytol 169:681–688

    PubMed  Google Scholar 

  • Hodek P, Pavel T, Marie S (2002) Flavonoids potent and versatile biologically active compounds interacting with cytochromes. Chem Biol Interact 139:1–214

    PubMed  CAS  Google Scholar 

  • Hofmann A, Wittenmayer L, Arnold G, Schieber A, Merbach W (2009) Root exudation of phloridzin by apple seedlings (Malus x domestica Borkh.) with symptoms of apple replant disease. J Appl Bot Food Quak 82:193–198

    CAS  Google Scholar 

  • Hsu PH (1989) Aluminum hydroxides and oxyhydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, vol Book series n°1, 2nd edn. Soil Sci Soc Am, Madison, pp 331–378

    Google Scholar 

  • Huang PM, Wang MC, Wang MK (1999) Catalytic transformation of phenolic compounds in the soil. In: Inderjit, Dakshini KMN, Chester FL (eds) Principles and Practices in Plant Ecology, Allelochemical Interactions. CRC Press, Boca Raton, pp 287–306

    Google Scholar 

  • Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can J Bot 77:1311–1315

    CAS  Google Scholar 

  • Inderjit, Dakshini KMM (1992a) Hesperitin 3 rutinoside (hesperidin) and taxifolin 3-arabinoside as germination and growth inhibitors in soils associated with the weed Pluchea lanceolata (DC.) C.B. Clarke (Asteraceae). J Chem Ecol 17:1585–1591

    Google Scholar 

  • Inderjit, Dakshini KMN (1992b) Formononetin 7-Q-glucoside (ononin), an additional growth inhibitor in soils associated with the weed Pluchea lanceolata (DC.) C.B. Clarke (Asteraceae). J Chem Ecol 18:713–718

    CAS  Google Scholar 

  • Inderjit, Pollock JL, Callaway RM, Holben W (2008) Phytotoxic effects of (±)-catechin in vitro, in soil, and in the field. PLoS One 3:e2536. doi:10.1371/journal.pone.0002536

    PubMed  CAS  Google Scholar 

  • Iwashina T (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24–44

    PubMed  Google Scholar 

  • Jones JT, Furlanetto C, Philips MS (2007) The role of flavonoids produced in response to cyst nematode infection of Arabidopsis thaliana. Nematology 9:671–677

    CAS  Google Scholar 

  • Jorgensen BB, Revsbech NP (1983) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O(2) and H(2)S microgradients. Appl Environ Microbiol 45:1261–1270

    PubMed  CAS  Google Scholar 

  • Juntheikki MR, Julkunnen-Titto R (2000) Inhibition of β-glucosidase and esterase by tannins from Betula, Salix and Pinus species. J Chem Ecol 28:1151–1165

    Google Scholar 

  • Kape R, Parniske M, Brandt S, Werner D (1992) Isoliquiritigenin, a strong nod gene-inducing and glyceollin resistance-inducing flavonoid from soybean root exudates. Appl Environ Microbiol 58:1705–1710

    PubMed  CAS  Google Scholar 

  • Kennedy JA, Powell HKJ (1985) Polyphenol interactions with aluminum (III) and iron (III)—their possible involvement in podzolization process. Aust J Chem 38:879–888

    CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé BJ (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    PubMed  CAS  Google Scholar 

  • Kikuchi K, Matsushita N, Suzuki K, Hogetsu T (2007) Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17:563–570

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. In: Scheper Th (ed) Advances in biochemical engineering/biotechnology, vol 71. Springer, Berlin, pp 1–49

    Google Scholar 

  • Kong CH, Li EHB, Hu EF, Xu EXH,Wang EP (2006) Allelochemicals released by rice roots and residues in soil. Plant Soil 288:47–56

    Google Scholar 

  • Kong CH, Wang P, Zhao H, Xu XH, Zhu YD (2008) Impact of allelochemical exuded from allelopathic rice on soil microbial community. Soil Biol Biochem 40:1862–1869

    CAS  Google Scholar 

  • Kuiters AT (1990) Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot Neerl 39:329–348

    CAS  Google Scholar 

  • Ladd JN (1985) Soil enzymes. In: Vaughan D, Malcom RE (eds) Soil organic matter and biological activity. Matinus Nijhoff, Dordrecht, pp 175–221

    Google Scholar 

  • Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentration. New Phytol 149:349–355

    CAS  Google Scholar 

  • Landi L, Valori F, Ascher J, Renella G, Falchini L, Nannipieri P (2006) Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol Biochem 38:509–516

    CAS  Google Scholar 

  • Lattanzio V, Kroon PA, Quideau S, Treutter D (2008) Plant phenolics—secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenols research, vol I. Wiley-Blackwell Publishing, Oxford, pp 1–35

    Google Scholar 

  • León-Barrios M, Dakora FD, Joseph CM, Phillips DA (1993) Isolation of Rhizobium meliloti nod gene inducers from alfalfa rhizosphere. Soil Appl Environ Microbiol 59:636–639

    Google Scholar 

  • Lewis JD, Thomas RB, Strain BR (1994) Effect of elevated CO2 on mycorrhizal colonization of loblolly-pine (Pinus taeda L) seedlings. Plant Soil 165:81–88

    CAS  Google Scholar 

  • Li SY, Zhang ZZ, Cain A, Wang B, Long M, Taylor J (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem 53:32–37

    PubMed  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, Chuchester

    Google Scholar 

  • Liu F, He J, Colombo C, Violante A (1999) Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate. Soil Sci 164:180–189

    CAS  Google Scholar 

  • Liu XZ, Zhang LM, Prosser JI, He JZ (2009) Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 41:687–694

    CAS  Google Scholar 

  • Lodhi MAK, Killingbeck KT (1980) Allelopathic inhibition of nitrification and nitrifying bacteria in a Ponderosa pine (Pinus ponderosa Dougl.) community. Amer J Bot 67:1423–1429

    CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecole. Geoderma 142:1–10

    CAS  Google Scholar 

  • Maciás FA, Milinillo JMG, Torres A, Varela M, Castellano D (1997) Bioactive favonoids from Helianthus annuus cultivars. Phytochem 45:683–687

    Google Scholar 

  • Makino T, Takahashi T, Sakurai Y, Nanzyo M (1996) Influence of soil chemical properties on adsorption and oxidation of phenolic acids in soil suspension. Soil Sci Plant Nutr 42:867–879

    CAS  Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    PubMed  CAS  Google Scholar 

  • Markham KR (1982) Techniques of flavonoid identification. Academic, New York

    Google Scholar 

  • Marschner H (1988) Mechanism of manganese acquisition by roots from soils. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 191–204

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Masaoka Y, Kojima M, Sugihara S, Yoshihara T, Koshino M, Ichihara A (1993) Dissolution of ferric phosphate by alfalfa (Medicago sativa L.) root exudates. Plant Soil 155(156):75–78

    Google Scholar 

  • Matthews S, Mila I, Scalbert A, Pollet B, Lapierre C, Herve du Penhoat CLM, Rolando C, Donnelly DMX (1997) Method for estimation of proanthocyanidins based on their acid depolymerization in the presence of nucleophiles. J Agric Food Chem 45:1195–1201

    Google Scholar 

  • Mian IH, Rodríguez-Kábana R (1982) Organic amendments with high tannin and phenolic contents for control of Meloidogyne arenaria in infested soil. Nematropica 12:220–233

    Google Scholar 

  • Mohamed ASA, Mori T, Islam SQ, Sato M, Yamasaki T (2000) Lethal activity of gallo- and condensed tannins against the free-living soil-inhabiting nematode, Caenorhabditis elegans. Pestic Sci 25:410–415

    CAS  Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze auf die andere—Allelopathie. Fischer, Jena

    Google Scholar 

  • Morris PF, Ward EWB (1992) Chemoattraction of zoospores of the soybean pathogen Phytophthora sojae by isoflavones. Physiol Mol Plant Pathol 40:17–22

    CAS  Google Scholar 

  • Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117:1171–1178

    PubMed  CAS  Google Scholar 

  • Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nod C expression by plant exudate requires NodD. Proc Natl Acad Sci USA 82:6609–6613

    PubMed  CAS  Google Scholar 

  • Murthy MS, Nagodra T (1977) Allelopathic effects of Aristida adscensionis on Rhizobium. J Appl Ecol 14:279–282

    Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium-repens) roots. Appl Environ Microbiol 57:434–439

    PubMed  CAS  Google Scholar 

  • Nambudiri AMD, Subba Rao PV, Bhat JV (1970) Metabolism of aromatic compounds by an Alternaria species. Phytochemistry 9:687–693

    CAS  Google Scholar 

  • Nannipieri P (1994) The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst CE, Double BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Adelaide, pp 238–244

    Google Scholar 

  • Nannipieri P, Badalucco L (2003) Biological processes. In: Benbi DK, Nieder R (eds) Handbook of processes and modelling in the soil–plant system. Haworth, Binghamton, pp 57–82

    Google Scholar 

  • Nannipieri P, Paul EA (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369

    CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F (2008) Effects of root exudates on microbial diversity and activity in rhizosphere soils. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Heideleberg, pp 339–365

    Google Scholar 

  • Ndakidemi PA, Dakora FD (2003) Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct Plant Biol 30:729–745

    Google Scholar 

  • Neumann G (2006) Root exudates and organic composition of plant roots. In: Luster J, Finlay R (eds) Handbook of Methods used in Rhizosphere Research. Swiss Federal Institute for Forest, Snow, and Landscape Research, Birmensdorf, Switzerland, online at www.rhizo.at/handbook

  • Neumann G, Römheld V (2001) The release of roots exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 41–93

    Google Scholar 

  • Norby RJ, Pastor J, Melillo JM (1986) Carbon-nitrogen interactions in CO2-enriched white oak: physiological and long-term perspectives. Tree Physiol 2:233–241

    PubMed  CAS  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    CAS  Google Scholar 

  • Northup RR, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    CAS  Google Scholar 

  • Nye PH (1979) Soil properties controlling the supply of nutrientsto root surfaces. In: Harley JL, Russel RS (eds) The soil–root interface. Academic Press, London, pp 21–38

    Google Scholar 

  • Oades JM (1988) The retention of organic matter in soil. Biogeoch 5:35–70

    CAS  Google Scholar 

  • Ohno T (2001) Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J Environ Qual 30:1631–1635

    PubMed  CAS  Google Scholar 

  • Okumura M, Filonow AB, Waller GR (1999) Use of 14 C-labeled alfalfa saponins for monitoring their fate in soil. J Chem Ecol 25:2575–2583

    CAS  Google Scholar 

  • Ozan A, Safir G, Nair M (1997) Persistence of isoflavonoids formononetin and biochanin A in soil and their effects on soil microbe populations. J Chem Ecol 23:247–258

    CAS  Google Scholar 

  • Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification in forest soil by monoterpenes. Pl Soil 205:147–154

    CAS  Google Scholar 

  • Padmavati M, Sakthivel N, Thara KV, Reddy AR (1997) Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46:499–502

    CAS  Google Scholar 

  • Parvez MM, Tonnita-Yokotani K, Fujii Y, Konishi T, Iwashina T (1982) Functions of flavonoids as allelopathic substances. Proc. Third World Congress on Allelopathy. International Allelopathy Society, Tsukuba, p 247

    Google Scholar 

  • Peak JD, Sparks DL, Ford RG (1999) An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J Coll Interf Sci 218:289–299

    CAS  Google Scholar 

  • Perrin DR, Bottomley W (1961) Pisatin—antifungal substance from Pisum-sativum L. Nature 191:76

    PubMed  CAS  Google Scholar 

  • Perry LG, Alford ER, Horiuchi J, Paschke MV, Vivanco JM (2007a) Chemical signals in the rhizosphere: root–root and root–microbes communication. In: The rhizosphere: biogeochemistry and organic substances at the soil–plant interface. CRC, Boca Raton, pp 297–330

    Google Scholar 

  • Perry LG, Thelen GC, Ridenour WM, Callaway RM, Paschke MV, Vivanco JM (2007b) Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J Chem Ecol 33:2337–2344

    PubMed  CAS  Google Scholar 

  • Phillips DA (1997) Occurrence of flavonoids and nucleosides in agricultural soils. Appl Environ Microbiol 63:4573–4577

    PubMed  CAS  Google Scholar 

  • Phillips DA, Tsai SM (1992) Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1:55

    CAS  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    PubMed  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1040

    PubMed  CAS  Google Scholar 

  • Pignatello JJ (1989) Sorption dynamics of organic compounds in soils and sediments. In: Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils. Soil Science Society of America Special Publication, Madison, pp 45–80

    Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–12

    CAS  Google Scholar 

  • Pillai B, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68:143–151

    PubMed  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere, biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York

    Google Scholar 

  • Pollock JL, Callaway RM, Thelen GC, Holben WE (2009) Catechin-metal interactions as a mechanism for conditional allelopathy by the invasive plant Centaurea maculosa. J Ecol 97:1234–1242

    CAS  Google Scholar 

  • Prietzel J, Hirch C (1998) Extractability and dissolution kinetics of pure and soil-added synthesized aluminium hydroxyl sulfate minerals. Eur J Soil Sci 49:669–681

    CAS  Google Scholar 

  • Putnam AR, Weston AL (1986) Adverse impacts of allelopathy. In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley & Sons, New York, pp 43–56

    Google Scholar 

  • Rao AS (1990) Root flavonoids. Bot Rev 56:1–84

    Google Scholar 

  • Rao RJ, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    PubMed  CAS  Google Scholar 

  • Rao RJ, Sharma ND, Hamilton JTG, Boyd DR, Cooper JE (1991) Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl Environ Microbiol 57:1563–1565

    PubMed  CAS  Google Scholar 

  • Recourt K, Vanbrussel AAN, Driessen AJM, Lugtenberg BJJ (1989) Accumulation of a nod gene inducer, the flavonoid naringenin, in the cytoplasmic membrane of Rhizobium leguminosarum biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. J Bacteriol 171:4370–4377

    PubMed  CAS  Google Scholar 

  • Recourt K, Schripsema J, Kijne JW, van Brussel AAN, Lugtenberg BJJ (1991) Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol Biol 16:841–852

    PubMed  CAS  Google Scholar 

  • Reichardt PB, Chapin FS, Bryant JP, Mattes BR, Clausen TP (1991) Carbon nutrient balance as a predictor of plant defense in Alaskan balsam poplar—potential importance of metabolite turnover. Oecologia 88:401–406

    Google Scholar 

  • Renella G, Egamberdiyeva D, Landi L, Mench M, Nannipieri P (2006a) Microbial activity and hydrolase activity during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biol Biochem 38:702–708

    CAS  Google Scholar 

  • Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Nannipieri P (2006b) Phosphomonoesterase production and persistence and composition of bacterial communities during plant material decomposition in soils with different pH values. Soil Biol Biochem 38:795–802

    CAS  Google Scholar 

  • Renella G, Landi L, Valori F, Nannipieri P (2007a) Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and sandy soil. Appl Soil Ecol 36:124–129

    Google Scholar 

  • Renella G, Szukics U, Landi L, Nannipieri P (2007b) Quantitative assessment of hydrolase production and persistence in soil. Biol Fertil Soils 44:321–329

    CAS  Google Scholar 

  • Renella G, Landi L, Garcia Mina JM, Giagnoni L, Nannipieri P (2011) Microbial and hydrolase activity after release of indoleacetic acid and ethylene-polyamine precursors by a model root surface. Appl Soil Ecol 47:106–110

    Google Scholar 

  • Rengel Z, Gutteridge R, Hirsch P, Hornby D (1996) Plant genotype, micronutrient fertilization and take-all colonization influence bacterial populations in the rhizosphere of wheat. Plant Soil 183:269–277

    CAS  Google Scholar 

  • Rice EL (1972) Allelopathic effects of Andropogon virginicus and its persistence in old fields. Amer J Bot 59:752–755

    Google Scholar 

  • Rice EL (1974) Allelopathy. Academic Press, New York

    Google Scholar 

  • Rice EL, Pancholy SK (1974) Inhibition of nitrification by climax ecosystems. III. Inhibitors other than tannins. Amer J Bot 61:1095–1103

    CAS  Google Scholar 

  • Ridenour WM, Vivanco JM, Feng Y, Horiuchi J, Callaway RM (2008) No evidence for tradeoffs: Centaurea plants from America are better competitors and defenders than plants from the native range. Ecol Monographs 78:369–386

    Google Scholar 

  • Römheld V, Marschner H (1983) Mechanisms of iron uptake by peanut plants: I. FeIII Reduction, chelate splitting, and release of phenolics. Plant Physiol 71:949

    PubMed  Google Scholar 

  • Ruan YJ, Kotraiah V, Straney DC (1995) Flavonoids stimulate spore germination in Fusarium solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Mol Plant-Microbe Interact 8:929–938

    CAS  Google Scholar 

  • Russel GB, Sutherland ORW, Hutchinson RFN, Christmas PE (1978) Vestitol: a phytoalexins with insect feeding-deterrent activity. J Chem Ecol 4:571–580

    Google Scholar 

  • Saslowsky DE, Dana CD, Winkel-Shirley B (2000) An allelic series for the chalcone synthase locus in Arabidopsis. Gene 255:127–138

    PubMed  CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J Plant Physiol 162:625–633

    PubMed  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bompadre MJ, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922

    CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bornpadre J, Vierheilig H, Ocampo JA, Godeas A (2007) The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can J Microbiol 53:702–709

    PubMed  CAS  Google Scholar 

  • Schimel JP, Van Cleve K, Cates RG, Clausen TP, Reichardt PB (1996) Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during suc-cession. Can J Bot 74:84–90

    CAS  Google Scholar 

  • Schnitzer M, Barr M, Hartenstein R (1984) Kinetics and characteristics of humic acids produced from simple phenols. Soil Biol Biochem 16:371–376

    CAS  Google Scholar 

  • Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M (2003) Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol 69:5859–5864

    Google Scholar 

  • Schultz JC, Hunter MD, Appel HM (1992) Antimicrobial activity of polyphenols mediates plant–herbivore interactions. In: Hemingway W, Laks PE (eds) Plant polyphenols: biogenesis, chemical properties, and significance. Plenum Press, New York, pp 621–637

    Google Scholar 

  • Schultze M, Kondorosi Á (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    Google Scholar 

  • Shafer SR, Blum U (1991) Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J Chem Ecol 17:369–389

    CAS  Google Scholar 

  • Shaw LJ, Hooker JE (2008) The fate and toxicity of the flavonoids naringenin and formononetin in soil. Soil Biol Biochem 40:528–536

    CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    PubMed  CAS  Google Scholar 

  • Shultz E, Engle FE, Wood JM (1974) New oxygenases in the degradation of flavones and flavonones by Pseudomonas putida. Biochem 13:1768–1776

    Google Scholar 

  • Simmonds MSJ (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochem 64:21–30

    CAS  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93

    CAS  Google Scholar 

  • Slapokas T, Granhall U (1991) Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability for earthworms. Biol Fertil Soils 10:241–248

    Google Scholar 

  • Sosa T, Valares C, Alias JC, Lobon NC (2010) Persistence of flavonoids in Cistus ladanifer soils. Plant Soil 337:51–63

    CAS  Google Scholar 

  • Spaink HP, Wijffelman CA, Okker RJH, Lugtenberg BJ (1989) Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Mol Biol 12:59–73

    CAS  Google Scholar 

  • Sparks DL (1995) Environmental soil chemistry. Academic Press, San Diego

    Google Scholar 

  • Sposito G (1996) The environmental chemistry of aluminum, 2nd edn. CRC Press, Lewis Pub, London

    Google Scholar 

  • Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Pauker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bact 47:1134–1139

    CAS  Google Scholar 

  • Star EA (1980) Frond exudates flavonoids as allelopathic agents in Pityroamma. Bull Torrey Bot Club 107:146–153

    CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    PubMed  CAS  Google Scholar 

  • Stenlid G (1961) Effect of some flavonoid pigments upon growth and ion absorption of wheat roots. Physiol Plant 14:659–670

    CAS  Google Scholar 

  • Stenlid G (1968) On the physiological effects of phloridzin, phloretin, and some related substances upon higher plants. Physiol Plant 21:882–894

    CAS  Google Scholar 

  • Stermitz FR, Hufbauer RA, Vivanco JM (2009) Retraction. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 151:967

    CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry. genesis, composition reactions, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Stubner S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. J Microbiol Methods 50:155–164

    PubMed  CAS  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Critical Rev Plant Sci 25:303–335

    CAS  Google Scholar 

  • Swain T (1979) Tannins and lignins. In: Rosenthal GA, Jansen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, New York, pp 657–682

    Google Scholar 

  • Takahashi L, Sert MA, Kelmer-Bracht AM, Bracht A, Ishii-Iwamoto EL (1998) Effects of rutin and quercetin on mitochondrial metabolism and on ATP levels in germinating tissues of Glycine max. Plant Physiol Biochem 36:495–501

    CAS  Google Scholar 

  • Tamura S, Chang C, Suzuki A, Kumai S (1967) Isolation and structure of a novel isoflavone derivative in red clover. Agric Biol Chem 31:1108–1109

    CAS  Google Scholar 

  • Tamura S, Chang C, Suzuki A, Kumai S (1969) Chemical studies on clover sickness. Part I. Isolation and structural elucidation of two new isoflavonoids in red clover. Agric Biol Chem 33:391–397

    CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    PubMed  CAS  Google Scholar 

  • Thelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM (2005) Insect herbivory stimulates allelopathic exudation by an invasive palnt and the suppression of natives. Ecol Lett 8:209–217

    Google Scholar 

  • Thibault JR, Fortin JA, Smirnoff WA (1982) In vitro allelopathic inhibition of nitrification by balsam poplar and balsam fir. Am J Bot 69:676–679

    Google Scholar 

  • Thorpe AS, Archer V, DeLuca TH (2006) The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl Soil Ecol 32:118–122

    Google Scholar 

  • Timonin MI (1946) Mircoflora of the rhizosphere in relation to the manganese-deficiency disease of oats. Proc Soil Sci Soc Am 11:284–292

    Google Scholar 

  • Toal ME, Yeomans C, Killham K, Meharg AA (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222:263–281

    CAS  Google Scholar 

  • Tolrà RP, Poschenrieder C, Luppi B, Barcelò J (2005) Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environ Exp Bot 54:231–238

    Google Scholar 

  • Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E, Cesco S (2008) Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem 40:1971–1974

    CAS  Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    PubMed  CAS  Google Scholar 

  • Tsao R, Papadopoulos Y, Yang R, Young JC, McRae K (2006) Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J Agric Food Chem 54:5797–5805

    PubMed  CAS  Google Scholar 

  • Ulanowska K, Tkaczyk A, Konopa G, Wegrzyn G (2006) Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch Microbiol 184:271–278

    PubMed  CAS  Google Scholar 

  • Uselman SM, Qualls RG, Thomas RB (2000) Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant Soil 222:191–202

    CAS  Google Scholar 

  • van Ginkel JH, Gorissen A, Polci D (2000) Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition 32:449-456

    Google Scholar 

  • Veluri R, Weir TL, Bais HP, Stermitz FR, Vivanco JM (2004) Phytotoxic and antimicrobial activities of catechin derivatives. J Agric Food Chem 52:1077–1082

    PubMed  CAS  Google Scholar 

  • Violante A, Pigna M, Ricciardella M, Gianfreda L (2002) Adsorption of phosphate on variable charge minerals and soils as affected by organic and inorganic ligands. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Developments in soil science, vol 28a. Elsevier Science B.V, Amsterdam, pp 279–295

    Google Scholar 

  • Wallstedt A, Gallet C, Nilsson MC (2005) Behaviour and recovery of the secondary metabolite batatasin-III from boreal forest humus: influence of temperature, humus type and microbial community. Biochem Syst Ecol 33:385–407

    CAS  Google Scholar 

  • Wang TSC, Huang PM, Chou CH, Chen JH (1986) The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Special publication number 17. Soil Science Society of America, Madison, pp 251–281

    Google Scholar 

  • Wang Y, Ma L, Pang C, Huang M, Huang Z, Gu L (2004) Synergetic inhibition of genistein and d-glucose on a-glucosidase. Bioorg Medicinal Chem Lett 14:2947–2950

    CAS  Google Scholar 

  • Watt M, Evans JR (1999) Proteoid roots. Physiology and development. Plant Physiol 121:317–323

    PubMed  CAS  Google Scholar 

  • Weber G, Shen F, Prajda N, Yang H, Li W, Yeh A, Csokai B, Olah E, Look KY (1997) Regulation of the signal transduction by drugs. Adv Enzyme Regul 37:35–55

    PubMed  CAS  Google Scholar 

  • Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69

    PubMed  CAS  Google Scholar 

  • Weidenhamer JD, Romeo JT (2004) Allelochemicals of Polygonella myriophylla: chemistry and soil degradation. J Chem Ecol 30:1067–1082

    PubMed  CAS  Google Scholar 

  • Weir TL, Bais HP, Vivanco JM (2003) Intraspecific and interspecific interactions mediated by a phytotoxin (-)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed). J Chem Ecol 30:2575–2576

    Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    PubMed  CAS  Google Scholar 

  • Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006a) Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668

    PubMed  CAS  Google Scholar 

  • Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006b) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927

    PubMed  CAS  Google Scholar 

  • White CS (1986) Volatile and water-soluble inhibitors of nitrogen mineralization and nitrification in a ponderosa pine ecosystem. Biol Fertil Soils 2:97–104

    Google Scholar 

  • Wojtaszek P, Stobiecki M, Gulewicz K (1993) Role of nitrogen and plant growth regulators in the exudation and accumulation of isoflavonoids by roots of intact white lupin (Lupinus albus L.) plants. J Plant Physiol 142:689–694

    CAS  Google Scholar 

  • Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogellange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    PubMed  CAS  Google Scholar 

  • Zhang F, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312

    CAS  Google Scholar 

  • Zhang PC, Sparks DL (1990) Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressure-jump relaxation. Soil Sci Soc Am J 54:1266–1273

    CAS  Google Scholar 

  • Zheng WF, Tan RX, Yang L, Liu ZL (1996) Two flavones from Artemisia giraldii and their antimicrobial activity. Planta Med 62:160–162

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by grants from Italian MIUR (FIRB-Programma “Futuro in Ricerca” and PRIN 2009), Free University of Bolzano (TN5031 und TN5046), Provincia Autonoma di Bolzano (Rhizotyr-TN5218); the University of Florence thanks the Ente Cassa di Risparmio di Firenze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cesco.

Additional information

All authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesco, S., Mimmo, T., Tonon, G. et al. Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48, 123–149 (2012). https://doi.org/10.1007/s00374-011-0653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0653-2

Keywords

Navigation