Skip to main content
Log in

Earthworm (Aporrectodea trapezoides)–mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO 3 –N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO 3 –N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin-reactive N in extracts of fumigated soils. Soil Biol Biochem 20:107–114

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Axmann H, Sebastianelli A, Arrillaga JL (1990) Sample preparation techniques of biological material for isotope analysis. In: Hardarson G (ed) Use of nuclear techniques in studies of soil-plant relationship. International Atomic Energy Agency, Viena, pp 41–53

    Google Scholar 

  • Azcon R, Azcon-Aguilar C, Barea JM (1978) Effect of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80:359–364

    Article  CAS  Google Scholar 

  • Bago B, PfefferP E, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:924–957

    Article  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecology Evol 20:634–641

    Article  Google Scholar 

  • Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44:666–676

    Article  Google Scholar 

  • Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setälä H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618

    Article  PubMed  CAS  Google Scholar 

  • Brookes PC, Kragt JF, Powlson DS, Jenkinson DS (1985) Chloroform fumigation and release of soil N: a rapid direct extraction method to measure microbial biomass N in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Article  Google Scholar 

  • Brussaard L, Pulleman MM, Ouédraogo E, Mando A, Six J (2007) Soil fauna and soil function in the fabric of the food web. Pedobiologia 50:447–462

    Article  Google Scholar 

  • Calvet C, Pera J, Barea JM (1993) Growth response of Marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviridae and Pythium ultimum in a peat–perlite mixture. Plant Soil 148:1–6

    Article  Google Scholar 

  • Campbell CA, Lafond GP, Leyshon AJ, Zentner RP, Janzen HH (1991) Effect of cropping practices on the initial potential rate of nitrogen mineralization in a thin Black Chernozem. Can J Soil Sci 71:43–53

    Article  CAS  Google Scholar 

  • Campbell CA, Biederbeck VO, Wen G, Zentner RP, Schoenau J, Hahn D (1999) Seasonal trends in soil biochemical attributes: effects of crop rotations in the semi-arid prairie. Can J Soil Sci 79:73–84

    Article  CAS  Google Scholar 

  • Cao Z-P, Qiao Y-H, Wang B-Q, Qin X (2006) Influence of agricultural intensification on the earthworm community in arable farmland in the North China Plain. Eur J Soil Biol 42:362–366

    Article  Google Scholar 

  • Cheng J-M, Yu X-Z, Wong M-H (2005) Roles of earthworm–mycorrhiza interactions on phytoremediation of Cd contaminated soil. Aata Ecologica Sinica 25:1256–1263

    CAS  Google Scholar 

  • Cheng J-M, Yu X-Z, Wong M-H (2006) Effect of earthworm-mycorrhiza interaction on available nutrients and ryegrass growth in Cd contaminated soil. J Agro-Environ Sci 25:685–689

    CAS  Google Scholar 

  • Cui ZL, Zhang FS, Chen XP (2008) On-farm estimation of indigenous nitrogen supply for site-specific nitrogen management in the North China plain. Nutr Cycl Agroecosyst 81:37–47

    Article  Google Scholar 

  • Curry JP, Byrne D (1992) The role of earthworms in straw decomposition and nitrogen turn over in arable land inIreland. Soil Biol Biochem 24:1409–1412

    Article  Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms—a review. Pedobiologia 50:463–477

    Article  Google Scholar 

  • Devliegher W, Verstraete W (1997) The effect of Lumbricus terrestris on soil in relation to plant growth: effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol Biochem 29:341–346

    Article  CAS  Google Scholar 

  • Edwards CA (2004) Earthworm ecology. CRC, Boca Raton, p 441

    Book  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Eisenhaue N, Konig S, Renker ACW (2009) Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol Biochem 41:561–567

    Article  Google Scholar 

  • Eisenhauer N, Scheu S (2008a) Earthworms as drivers of the competition between grasses and legumes. Soil Biol Biochem 40:2650–2659

    Article  CAS  Google Scholar 

  • Eisenhauer N, Scheu S (2008b) Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. Oikos 117:1026–1036

    Article  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7:616–622

    Article  Google Scholar 

  • Gormsen D, Olsson P, Hedlund K (2004) The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol 27:211–220

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with trifolium-subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazz S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Decker, New York, pp 415–417

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  PubMed  CAS  Google Scholar 

  • Jordan D, Kremer RJ, Bergfield WA, Kim KY, Cacnio VN (1995) Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol Fertil Soil 19:297–302

    Article  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen—inorganic forms. In: Page Al (ed) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, pp 643–698

    Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Laossi KR, Ginot A, Noguera DC, Blouin M, Barot S (2010) Earthworm effects on plant growth do not necessarily decrease with soil fertility. Plant Soil 328:109–118

    Article  CAS  Google Scholar 

  • Lavelle P, Melendez G, Pashanasi B, Schaefer R (1992) Nitrogen mineralization and reorganization in casts of the geophagous tropical earthworm Pontoscolex corethrurus (Glossoscolecidae). Biol Fert Soil 14:49–53

    Article  CAS  Google Scholar 

  • Lawrence B, Fisk MC, Fahey TJ (2003) Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum). New Phytol 157:145–153

    Article  Google Scholar 

  • Lussenhop J (1996) Collembola as mediators of microbial symbiont effects upon soybean. Soil Biol Biochem 28:363–369

    Article  CAS  Google Scholar 

  • Ma Y, Dickinson NM, Wong MH (2006) Beneficial effect of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    Article  CAS  Google Scholar 

  • Magdoff F, Weil RR (2004) Soil organic matter in sustainable agriculture. CRC, Boca Raton, pp 15–21

    Book  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McLean MA, Migge-Kleian S, Parkinson D (2006) Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biol Invasions 8:1257–1273

    Article  Google Scholar 

  • Milcu A, Partsch S, Scherber C, Weisser WW, Scheu S (2008) Earthworms and legumes control litter decomposition in a plant diversity gradient. Ecology 89:1872–1882

    Article  PubMed  Google Scholar 

  • Milleret R, Renée-Claire LB, Jean-Michel G (2009) Root, mycorrhiza and earthworm interactions: their effects on soil structuring processes, plant and soil nutrient concentrations and plant biomass. Plant Soil 316:1–12

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Newman EI (1966) A method of estimating total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Circular 939:1–8

    Google Scholar 

  • Ortiz-Ceballos AI, Pena-cabriales JJ, Fragoso C (2007) Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch. Biol Fert Soil 44:181–186

    Article  Google Scholar 

  • Patron JC, Sanchez P, Brown GG (1999) Phosphorus in soil and Brachialis decumbens plants as affected by the geophagous earthworm Pontoscolex corethrurus and P fertilization. Pedobiologia 43:547–556

    Google Scholar 

  • Pattinson GS, Smith SE, Doube BM (1997) Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular–arbuscular mycorrhizal fungi Globus intraradices. Soil Biol Biochem 29:1079–1088

    Article  CAS  Google Scholar 

  • Raghubanshi AS, Srivastava SC, Singh RS, Singh JS (1990) Nutrient release in leaf litter. Nature 346:227

    Article  Google Scholar 

  • Scheu S (1987) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biology and Fertility of Soils 5:230–234

    Article  Google Scholar 

  • Scheu S (1994) There is an earthworm mobilizable nitrogen pool in soil. Pedobiologia 38:243–249

    Google Scholar 

  • Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856

    Google Scholar 

  • Singh JS, Singh DP, Kashyap AK (2009) A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region. India Plant Soil Environ 55:223–230

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Soils Laboratory Staff, Royal Tropical Institute (1984) Analytical methods of the service laboratory for soil, plant and water analysis. Part 1: methods for soil analysis. Royal Tropical Institute, Amsterdam

  • Sparling GP, Feltham CW, Reynolds J, West AW, Singleton P (1990) Estimation of soil microbial carbon by fumigation–extraction method. Use on soils of high organic matter content, and a reassessment of the KEc-factors. Soil Biol Biochem 22:301–307

    Article  Google Scholar 

  • Subler S, Baranski CM, EdwardsC A (1997) Earthworm additions increased short-term nitrogen availability and leaching in two grain crop agro-ecosystems. Soil Biol Biochem 29:413–421

    Article  CAS  Google Scholar 

  • Svensson K, Friberg H (2007) Changes in active microbial biomass by earthworms and grass amendments in agricultural soil. Biol Fertil Soils 44:223–228

    Article  Google Scholar 

  • Tiunov AV, Dobrovolskaya TG (2002) Fungal and bacterial communities in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 46:595–605

    Article  Google Scholar 

  • Tuffen F, Eason WR, Scullion J (2002) The effect of earthworms and arbuscular mycorrhizal fungi on rowth of and 32P transfer between Allium porrum plants. Soil Biol Biochem 34:1027–1036

    Article  CAS  Google Scholar 

  • Van Aarle IM, Soderstrom B, Olsson PA (2003) Growth and interactions of arbuscula rmycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biol Biochem 35:1557–1564

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–264

    Article  CAS  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgeet RD, Klironomos JN, Setäl H, Van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Welke SE, Parkinson D (2003) Effect of Aporrectodea trapezoides activity on seedling growth of Pseudotsuga menziesii, nutrient dynamics and microbial activity in different soils. Forest Ecol Manag 173:169–186

    Article  Google Scholar 

  • Wurst S, Dugassa-Gobena D, Langel R, Bonkoski M, Scheu S (2004) Combined effects of earthworms and vesicular–arbuscular mycorrhizas on plant and aphid performance. New Phytol 163:169–173

    Article  Google Scholar 

  • Wurst S, Allema B, Duyts H, Van der Putten WH (2008) Earthworms counterbalance the negative effect of microorganisms on plant diversity and enhance the tolerance of grasses to nematodes. Oikos 117:711–718

    Article  Google Scholar 

  • Zarea MJ, Ghalavand A, Goltapeh EM (2009) Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia 4:223–235

    Article  Google Scholar 

  • Zhang L, Zhang J, Christie P, Li X (2008) Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biol Fertil Soils 45:205–211

    Article  CAS  Google Scholar 

  • Zhang B, Liu Y, Li C, Hu F, Velde B (2010) Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil. Soil Sci Soc Am J 74:1239–1247

    Article  Google Scholar 

  • Zhang H, Wu X, Li G, Qin P (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543–554

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Special Scientific Fund for Non-profit Public Industry (MOA, 201103003) and the Project Sponsored by the Scientific Research Foundation in China Agricultural University (Project 2010JS112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ll, H., Li, X., Dou, Z. et al. Earthworm (Aporrectodea trapezoides)–mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize. Biol Fertil Soils 48, 75–85 (2012). https://doi.org/10.1007/s00374-011-0610-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0610-0

Keywords

Navigation