Skip to main content
Log in

Effects of using different host plants and long-term fertilization systems on population sizes of infective arbuscular mycorrhizal fungi

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The effect of cultivation of mycorrhizal and non-mycorrhizal plants and mineral fertilization on the arbuscular mycorrhizal fungal (AMF) community structure of maize (Zea mays L.) plants was studied. Soil samples were collected from two field experiments treated for 5 years with three fertilization systems (Control – no fertilization; Mineral – NPK fertilization; and Organic – Farmyard manure fertilization). Soil samples containing soil and root fragments of rapeseed (Brassica napus L., non-mycorrhizal plant) and wheat (Triticum aestivum L., mycorrhizal plant) collected from the field plots were used as native microbial inoculum sources to maize plants. Maize plants were sown in pots containing these inoculum sources for four months under glasshouse conditions. Colonization of wheat roots by AMF, AMF community structure, AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize were investigated. Sixteen AMF species were identified from rhizosphere soil samples as different species of genera Acaulospora, Claroideoglomus, Dentiscutata, Funneliformis, Gigaspora, Quatunica, Racocetra, and Rhizoglomus. Maize plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral NPK-fertilizer or non-fertilized. The results also showed that inoculum from non-mycorrhizal plants combined with mineral fertilization decreased AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize. Our findings suggest that non-mycorrhizal plants, such as B. napus, can negatively affect the presence and the effects of soil inoculation on maize growth. Also, our results highlight the importance of considering the long-term effect of rapeseed cultivation system on the reduction of population sizes of infective AMF, and its effect on succeeding annual crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57(233–266):314

    Google Scholar 

  • Barrios-Masias FH, Cantwell MI, Jackson LE (2011) Cultivar mixtures of processing tomato in an organic agroecosystems. Org Agric 1(17–30):316

    Google Scholar 

  • Bécard G, Kosuta S, Tamasloukht M, Sájalon-Delmas N, Roux C (2004) Partner communication in the arbuscular mycorrhizal interaction. Can J Bot 82(1186–1197):318

    Google Scholar 

  • Belay Z, Vestberg M, Assefa F (2015) Diversity and abundance of arbuscular mycorrhizal fungi across different land use types in a humid low land area of Ethiopia. Trop Subtrop Agroecosyst 18(47–69):321

    Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247

    Article  CAS  Google Scholar 

  • Black CA (1965) Methods of soil analysis, part 2. In: Black CA (ed) Agronomy monograph no 9. American Society of Agronomy, Madison 771–1572

  • Brady CN, Weil RR (2008) The nature and properties of soil. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bressan W (2001) Interactive effect of phosphorus and nitrogen on in vitro spore germination of Glomus etunicatum Becker & Gerdemann, root growth and mycorrhizal colonization. Braz J Microbiol 32:276–280

    Article  Google Scholar 

  • Carneiro MAC, Ferreira DA, Souza ED, Paulino HB, Saggin Junior OJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in soil aggregates from fields of “murundus” converted to agriculture. Pesq Agrop Brasileira 50(4):313–321. https://doi.org/10.1590/S0100-204X2015000400007

    Article  Google Scholar 

  • Córdova AA, Cruz MCR, Cuevas LVH, Alarcón A, Narcía AT, Cruz RG (2017) Responses of arbuscular mycorrhizal fungi and grass Leersia haxandra Swartz exposed to soil with crude oil. Water Air Soil Pollut 228(65):1–12. https://doi.org/10.1007/s11270-017-3247-2

    Article  CAS  Google Scholar 

  • Couzigou JM, Lauressergues D, André O, Gutjahr C, Guillotin B, Bécard G, Combier JP (2017) Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis. Cell Host Microbe 21(1):106–112. https://doi.org/10.1016/j.chom.2016.12.001

    Article  PubMed  CAS  Google Scholar 

  • Dalpé Y, Souza FA, Declerck S (2005) The life cycle of Glomus species in monoxenic culture. In: Declerck S, Strullu D-G, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 49–71. https://doi.org/10.1007/3-540-27331-X_4

    Chapter  Google Scholar 

  • Eltrop L, Marschner H (1996) Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea doies) seedlings grow in semi-hydroponic sand culture. II. Carbon partitioning in plants supplied with ammonium or nitrate. New Phytol 133:474–486

    Google Scholar 

  • Fracchia S, Menendez A, Godeas A, Ocampo JA (2001) A method to obtain monosporic cultures of arbuscular mycorrhizal fungi. Soil Biol Biochem 33(9):1283–1285. https://doi.org/10.1016/S0038-0717(01)00014-1

    Article  CAS  Google Scholar 

  • Gai J, Gao W, Liu L, Chen Q, Feng G, Zhang J, Christie P, Li X (2015) Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensely managed agricultural ecosystems. J Soils Sediments 15(5):1200–1211. https://doi.org/10.1007/s11368-015-1060-3

    Article  Google Scholar 

  • Gao Y, Li Q, Lingn W, Zhu X (2011) Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J Hazard Mater 185(2-3):703–709. https://doi.org/10.1016/j.jhazmat.2010.09.076

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Yang J, Ren S, Hailong L (2015) The trend of soil organic carbon, total nitrogen, and wheat and maize productivity under different long-term fertilizations in the upland fluvoaquic soil of North China. Nutr Cycl Agroecosyst 103(1):61–73. https://doi.org/10.1007/s10705-015-9720-7

    Article  CAS  Google Scholar 

  • Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol Biochem 75:54–63. https://doi.org/10.1016/j.soilbio.2014.03.023

    Article  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 1:43–66

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Goto BT, Silva GA, de Assis DMA, Silva DKA, Souza RG, Ferreira ACA, Jobim K, Mello CMA, Vieira HEE, Maia LC, Oehl F (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119(1):117–132

    Article  Google Scholar 

  • Harikumar VS, Błaszkowski J, Medhanie H, Kanagaraj MK, Deepak Samuel V (2015) Arbuscular mycorrhizal fungi colonizing the plant communities in Eritrea, Northeast Africa. Appl Ecol Environ Res 13(1):193–203. https://doi.org/10.15666/aeer/1301_193203

    Article  Google Scholar 

  • Hassan SED, Liu A, Bittman S, Forge TA, Hunt DE, Hijri M, St-Arnaud M (2013) Impact of 12-year field treatments with organic and inorganic fertilizers on crop productivity and mycorrhizal community structure. Biol Fertil Soils 49(8):1109–1121

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1939) The water culture method for growing plant without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Hodge A, Storer K (2014) Arbuscular mycorrhizal and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19

    Article  CAS  Google Scholar 

  • IUSS WORKING GROUP WRB (2006) World reference base for soil. World soil resources reports. n. 103. FAO, Rome, p 128p

    Google Scholar 

  • Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric Ecosyst Environ 121(3):196–210. https://doi.org/10.1016/j.agee.2006.12.017

    Article  Google Scholar 

  • Jenkins WR (1964) A rapid centrifugal flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  • Kiriacheck SG, Azevedo LBC, Peres LEP, Lambais MR (2009) Regulação do desenvolvimento de micorrizas arbusculares. Rev Bras Ciênc Solo 33(1):1–16. https://doi.org/10.1590/S0100-06832009000100001

    Article  Google Scholar 

  • Klironomos JN (1995) Arbuscular mycorrhizal of Acer saccharum in different soil types. Can J Bot 73(11):1824–1830. https://doi.org/10.1139/b95-193

    Article  Google Scholar 

  • Lambers H, Teste FF (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient-availability play the same game? Plant Cell Environ 36:1911–2070

    PubMed  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334(1-2):11–31. https://doi.org/10.1007/s11104-010-0444-9

    Article  CAS  Google Scholar 

  • Lambers H, Martinoia E, Renton M (2015) Plant adaptations to severely phosphorus-impoverished soils. Curr Opin Plant Biol 25:23–31. https://doi.org/10.1016/j.pbi.2015.04.002

    Article  PubMed  CAS  Google Scholar 

  • Lankau RA, Wheeler E, Bennett AE, Strauss SY (2011) Plant-soil feedbacks contribute to an intransitive competitive network that promotes both genetic and species diversity. J Ecol 99(1):176–185. https://doi.org/10.1111/j.1365-2745.2010.01736.x

    Article  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:3–15

    Article  Google Scholar 

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

    Article  Google Scholar 

  • Mikanová O, Šimon T, Kopecký J, Ságová-Marečková M (2013) Soil biological characteristics and microbial community structure in a field experiment. Open. Life Sci 10:249–259

    Google Scholar 

  • Oehl F, Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Oehl F, Jansa J, Ineichen K, Mäder P, van der Heijden M (2011) Arbuscular mycorrhizal fungi as bio-indicators in Swiss agricultural soils. Rech Agron Suisse 2:304–311

    Google Scholar 

  • Okalebo JR, Gathua KW, Woomer PL (1993) Laboratory methods of plant and soil analysis: A working manual. Soil Sci East Africa Tech Publ 1:22–29

    Google Scholar 

  • Oliveira RS, Galvão HC, de Campos MCR, Eller CR, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205(3):1183–1194. https://doi.org/10.1111/nph.13175

    Article  PubMed  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of available phosphorous in soils by extraction with sodium bicarbonate. US Department of Agriculture, Washington, DC (Circular 939)

    Google Scholar 

  • Olsson PA, Tyler G (2004) Occurrence of non-mycorrhizal plant species in south Swedish rocky habitats is related to exchangeable soil phosphate. J Ecol 92:806–815

    Article  Google Scholar 

  • Pakpour S, Klironomos J (2015) The invasive plant, Brassica nigra, degrades local mycorrhizas across a wide geographical landscape. Roy Soc Open Sci 2(9):150300. https://doi.org/10.1098/rsos.150300

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85(1):31–40. https://doi.org/10.4141/P03-159

    Article  Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008a) Ion dynamics during the polarized growth of arbuscular mycorrhizal fungi: from presymbiosis to symbiosis. In: Varma A, Hock B (eds) Mycorrhiza: biology, genetics, novel endophytes and biotechnology. Springer, Heidelberg, pp 241–261. https://doi.org/10.1007/978-3-540-78826-3_12

  • Ramos AC, Façanha AR, Feijó JA (2008b) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178(1):177–188. https://doi.org/10.1111/j.1469-8137.2007.02344.x

    Article  PubMed  CAS  Google Scholar 

  • Ramos AC, Façanha AR, Lima PT, Feijó JA (2008c) pH signature for the responses of arbuscular mycorrhizal fungi to external stimuli. Plant Signal Behav 3:1–3

    Article  Google Scholar 

  • Ramos AC, Martins MA, Okorokova-Façanha AL, Olivares FL, Okorokov LA, Sepúlveda N, Feijó JA, Façanha AR (2009) Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. Mycorrhiza 19(2):69–80. https://doi.org/10.1007/s00572-008-0204-3

    Article  PubMed  CAS  Google Scholar 

  • Schenck NC, Perez Y (1987) Manual for the identification of VA mycorrhizal fungi, Second edn. International Culture Collection of VA Mycorrhizal Fungi (INVAM), University of Florida, Gainesville

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sharma MP, Reddy UG, Adholeya A (2011) Response of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) grown conventionally and on beds in a sandy loam soil. Indian J Microbiol 51(3):384–389. https://doi.org/10.1007/s12088-011-0134-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sieverding E, da Silva GA, Berndt R, Oehl F (2015) Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 129(2):373–386

    Article  Google Scholar 

  • Silva FSB, Yano-Melo AM, Brandão JA, Maia LC (2005) Sporulation of arbuscular mycorrhizal fungi using Tris-HCl buffer in addition to nutrient solutions. Braz J Microbiol 36:327–332

    Google Scholar 

  • Silva IRS, Mello CMA, Ferreira Neto RA, Silva DKA, Melo AL, Oehl F, Maia LO (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl Soil Ecol 84:166–175. https://doi.org/10.1016/j.apsoil.2014.07.008

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of Diversity. Nature 163(4148):688–688

    Article  Google Scholar 

  • Siqueira JO, Hubbell DH (1986) Effect of organic substrates on germination and germ tube growth of vesicular-arbuscular mycorrhizal fungus spores in vitro. Pesq Agrop Brasileira 21:523–527

    Google Scholar 

  • Siqueira JO, Hubbell DH, Schenck NC (1982) Spore germination and germ tube growth of a vesicular-arbuscular mycorrhizal fungus “in vitro”. Mycologia 74(6):952–959. https://doi.org/10.2307/3792725

    Article  Google Scholar 

  • Siqueira JO, Sylvia D, Gibson J, Hubbel D (1985) Spores, germination, and germ tubes of vesicular-arbuscular mycorrhizal fungi. Can J Microbiol 31(11):965–997. https://doi.org/10.1139/m85-183

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Souza FA, Declerck S, Smith E, Kowalchuk GA (2005) Morphological, ontogenetic and molecular characterization of Scutellospora reticulate (Glomeromycota). Mycol Res 109(6):697–706. https://doi.org/10.1017/S0953756205002546

    Article  PubMed  CAS  Google Scholar 

  • Souza TAF, Rodrigues AF, Marques LF (2015a) Long-term effects of alternative and conventional fertilization. I: effects on arbuscular mycorrhizal fungi community composition. Russ Agric Sci 41:454–461

    Article  Google Scholar 

  • Souza TAF, Rodrígues AF, Marques LF (2015b) Long-term effects of alternative and conventional fertilization on macroarthropod community composition: a field study with wheat (Triticum aestivum L.) cultivated on a Ferralsol. Org Agric 6:323–330. https://doi.org/10.1007/s13165-015-0138-y416

    Article  Google Scholar 

  • Souza TAF, Rodrígues AF, Marques LF (2016) The trend of soil chemical properties, and rapeseed productivity under diferent long-term fertilizations and stubble management in a Ferralsols of northeastern Brazil. Org Agric. https://doi.org/10.1007/s13165-106-0164-4

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Theden GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4(5):727–731. https://doi.org/10.1371/journal.pbio.0040140

    Article  CAS  Google Scholar 

  • Summuna B, Sheikh PA, Mushtaq T (2017) Evaluation of arbuscular mycorrhizal fungi of orchard soils for growth improvement in maize under protected conditions. Int J Curr Microbiol App Sci 6(3):1303–1313. https://doi.org/10.20546/ijcmas.2017.603.151

    Article  CAS  Google Scholar 

  • Valetti L, Iriarte L, Fabra A (2016) Effect of previous cropping of rapeseed (Brassica napus L.) on soybean (Glycine max) root mycorrhization, nodulation, and plant growth. Eur J Soil Biol 76:103–106. https://doi.org/10.1016/j.ejsobi.2016.08.005

    Article  Google Scholar 

  • Verdin A, Sahraoui AL-H, Fontaine J, Grandmoungin-Ferjani A, Durand R (2006) Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza 16(6):397–405. https://doi.org/10.1007/s00572-006-0055-8

    Article  PubMed  CAS  Google Scholar 

  • Vilariño A, Sainz MJ (1997) Treatment of Glomus mosseae propagules with sucrose increases spore germination and inoculum potential. Soil Biol Biochem 29(9-10):1571–1573. https://doi.org/10.1016/S0038-0717(97)00058-8

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific, Oxford IBP handbook no15

    Google Scholar 

  • Volante A, Lingua G, Cesaro P, Cresta A, Puppo M, Ariati L, Berta G (2005) Influence of three species of arbuscular mycorrhizal fungi on the persistence of aromatic hydrocarbons in contaminated substrates. Mycorrhiza 16(1):43–50. https://doi.org/10.1007/s00572-005-0012-y

    Article  PubMed  CAS  Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111(2):137–153

    Article  PubMed  Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancrof I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 33–50. https://doi.org/10.1007/978-1-4419-7118-0_2

    Chapter  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Zhang HM, Wang BR, Xu MG (2008) Effects of inorganic fertilizer inputs on grain yields and soil properties in a long-term wheat-corn cropping system in South China. Commun Soil Sci Plant Anal 39(11-12):1583–1599. https://doi.org/10.1080/00103620802071721

    Article  CAS  Google Scholar 

  • Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326(1-2):511–522. https://doi.org/10.1007/s11104-009-9988-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to Joana Costa for the valuable discussions and checking of English grammar. The authors also thank the two anonymous reviewers for the helpful comments, which greatly improved a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tancredo Augusto Feitosa de Souza.

Electronic supplementary material

ESM 1

(DOCX 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, T.A.F., Santos, D. Effects of using different host plants and long-term fertilization systems on population sizes of infective arbuscular mycorrhizal fungi. Symbiosis 76, 139–149 (2018). https://doi.org/10.1007/s13199-018-0546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-018-0546-3

Keywords

Navigation