Skip to main content

Advertisement

Log in

Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus)

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

A pot experiment was conducted to evaluate the influence of pre-inoculation of cucumber plants with each of the three arbuscular mycorrhizal (AM) fungi Glomus intraradices, Glomus mosseae, and Glomus versiforme on reproduction of the root knot nematode Meloidogyne incognita. All three AM fungi tested significantly reduced the root galling index, which is the percentage of total roots forming galls. Numbers of galls per root system were significantly reduced only in the G. intraradices + M. incognita treatment. The number of eggs per root system was significantly decreased by AM fungus inoculation, no significant difference among the three AM fungal isolates. AM inoculation substantially decreased the number of females, the number of eggs g−1 root and of the number of eggs per egg mass. The number of egg masses g−1 root was greatly reduced by inoculation with G. mosseae or G. versiforme. By considering plant growth, nutrient uptake, and the suppression of M. incognita together, G. mosseae and G. versiforme were more effective than G. intraradices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464 doi:10.1007/s005720050147

    Article  Google Scholar 

  • Bagyaraj DJ (1984) Biological interactions with VA mycorrhizal fungi. In: Powell CL1, Bagyaraj DJ (eds) VA Mycorrhiza. CRC, Boca Raton, pp 131–153

    Google Scholar 

  • Byrd DW, Kirpartrick T, Baker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Calvet C, Pera J, Barea JM (1993) Growth response of Marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviridae and Pythium ultimum in a peat–perlite mixture. Plant Soil 148:1–6 doi:10.1007/BF02185378

    Article  Google Scholar 

  • Calvet C, Pinochet J, Hernández-Dorrego A, Estaún V, Camprubí A (2001) Field microplot performance of the peach–almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10:295–300 doi:10.1007/PL00009998

    Article  Google Scholar 

  • Carling DE, Roncadori RW, Hussey RS (1989) Interactions of vesicular–arbuscular mycorrhizal fungi, root-knot nematode, and phosphorus fertilization on soybean. Plant Dis 73:730–733 doi:10.1094/PD-73-0730

    Article  Google Scholar 

  • Castillo P, Nico AI, Azcon-Aguilar C, Del Rio Rincon C, Calvet C, Jimenez-Diaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55:705–713 doi:10.1111/j.1365-3059.2006.01400.x

    Article  Google Scholar 

  • Chinese Ministry of Agriculture (2006) Report on changing regional cultivated areas and yields of vegetables. http://zzys.agri.gov.cn/shucai_cx_result.asp

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–510 doi:10.1007/s00374-007-0232-8

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028 doi:10.1094/MPMI.1998.11.10.1017

    Article  CAS  Google Scholar 

  • de la Peña E, Echeverria SR, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840 doi:10.1111/j.1469-8137.2005.01602.x

    Article  PubMed  Google Scholar 

  • De Souza P (1979) Interactions of Gigaspora margarita and Meloidogyne exigua on coffee grown at three levels of phosphorus. Abstracts of the North Am. Cont Mycorrhizae. Colorado State Univ., CO, pp. 103

  • Diedhiou PMHJ, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204 doi:10.1007/s00572-002-0215-4

    Article  PubMed  CAS  Google Scholar 

  • Dodd JC (2000) The role of arbuscular mycorrhizal fungi in agro- and natural ecosystems. Outlook Agric 29:55–62

    Google Scholar 

  • Dong WB, Shi YM, Li RG, Jiang RD, Zhao ZQ, Li Q (2004) Species identification and occurrence investigation of vegetable root—knot nematodes under protected cultivation in Shandong province. J Laiyang Agric Coll 21:106–108

    Google Scholar 

  • Forge T, Muehlchen A, Hackenberg C, Neilsen G, Vrain T (2001) Effects of preplant inoculation of apple (Malus domestica Borkh.) with arbuscular mycorrhizal fungi on population growth of the root-lesion nematode, Pratylenchus penetrans. Plant Soil 236:185–196 doi:10.1023/A:1012743028974

    Article  CAS  Google Scholar 

  • Francl LJ (1993) Interactions of nematodes with mycorrhizae and mycorrhizal fungi. In: Kan MW (ed) Nematode Interactions. Champan and Hall, London, UK, pp 203–216

    Google Scholar 

  • Gaillaud MC, Dubreuil F, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida Engler J et al (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113 doi:10.1016/j.jplph.2007.05.007

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500 doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Good JM (1968) Relation of plant-parasitic nematodes to soil management practices. In: Smart GC, Perry VG (eds) Tropical nematology. University of Florida, Gainesville, p 152

    Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas? New Phytol 149:357–359 doi:10.1046/j.1469-8137.2001.00077.x

    Article  Google Scholar 

  • Habte M, Zhang YC, Schmitt DP (1999) Effectiveness of Glomus species in protecting white clover against nematode damage. Can J Bot 77:135–139 doi:10.1139/cjb-77-1-135

    Article  Google Scholar 

  • Hao ZP, Christie P, Qin L, Wang CX, Li XL (2005) Control of fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus. J Plant Nutr 28:1961–1974 doi:10.1080/01904160500310997

    Article  CAS  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157 doi:10.1002/ps.820

    Article  PubMed  CAS  Google Scholar 

  • Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503 doi:10.1016/j.baae.2005.04.001

    Article  Google Scholar 

  • Hussey RS, Barker KR (1973) A comparison of methods of collecting inoculation of Meloidogyne species, including a new technique. Plant Dis 57:1025–1028

    Google Scholar 

  • Hussey RS, Roncadori RW (1982) Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Dis 66:9–14

    Google Scholar 

  • Jaizme-Vega M del C, Rodriguez-Romero AS, Barroso Nunez LA (2006) Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits Paris 61:151–162 doi:10.1051/fruits:2006013

    Article  Google Scholar 

  • Jaizme-Vega MC, Tenoury P, Pinochet J, Jaumot M (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant Soil 196:27–35 doi:10.1023/A:1004236310644

    Article  CAS  Google Scholar 

  • Kesba HH, Al-Sayed ASA (2005) Interactions of three species of plant-parasitic nematodes with arbuscular mycorrhizal fungus, Glomus macrocarpus, and their effect on grape biochemistry. Nematology 7:945–952 doi:10.1163/156854105776186406

    Article  Google Scholar 

  • Krusberg LR, Nelson LW (1958) Pathogenesis of root-knot nematodes to Porto Rico variety of sweet potato. Phytopathology 48:30–39

    Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I et al (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163 doi:10.1093/pcp/pci231

    Article  PubMed  CAS  Google Scholar 

  • Lindermann RG (1988) Mycorrhizal interaction with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Liu RJ, Li XL (2000) Arbuscular mycorrhizae and application (in Chinese). Science, Beijing, China, p 71

    Google Scholar 

  • Oostenbrink M (1960) Estimating nematode populations by some selected methods. In: Sasser JN Jenkins WR (ed) Nematology. University of North Carolina, Chapel Hill, NC. 203, pp 85–102

    Google Scholar 

  • Patel SK, Patel AJ, Patel DJ (1988) Effect of interaction between root-knot (Meloidogyne incognita and M. javanica) and reniform (Rotylenchulus reniformis) nematodes on nutrient uptake by tobacco plant. Tob Res 14:106–108

    Google Scholar 

  • Peng DL (1998) Occurrence and prevention of vegetable root knot nematode disease. China Veg 4:57–58

    Google Scholar 

  • Qu B, Li BJ, Fan HY, Zh YS (2003) The new development tendency and strategy of non-polluted control of cucumber disease. North Hortic 5:7–8

    Google Scholar 

  • Rhodes LH (1980) The use of mycorrhizae in crop production systems. Outlook Agric 10:275–281

    Google Scholar 

  • Rodriguez Romero AS, Jaizme-Vega MC (2005) Effect of the arbuscular mycorrhizal fungus Glomus manihotis on the root-knot nematode, Meloidogyne javanica, in banana. Nematol Mediterr 33:217–221

    Google Scholar 

  • Rosendahl CN, Rosendahl S (1990) The role of vesicular-arbuscular mycorrhiza in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis 9:1–3

    Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31:313–318 doi:10.1016/0098-8472(91)90055-S

    Article  Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on Nematology. Society of Nematologist, Hyattaville, pp 7–14

    Google Scholar 

  • Siddiqui ZA, Akhtar MS (2007) Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fertil Soils 43:603–609 doi:10.1007/s00374-006-0131-4

    Article  Google Scholar 

  • Smith GS (1998) The role of phosphorus nutrition in interactions of vesicular-arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathology 78:371–374

    Google Scholar 

  • Smith GS, Roncadori RW, Hussey RS (1986) Interaction of endomycorrhizal fungi, superphosphate, and Meloidogyne incognita on cotton in microplat and field studies. J Nematol 18:208–216

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Stroble NE, Hussey RS, Roncadori RW (1982) Interactions of vesicular-arbuscular mycorrhizal fungi, Meloidogyne incognita, and soil fertility on peach. Phytopathology 72:690–694

    Article  Google Scholar 

  • Talavera M, Itou K, Mizukubo T (2001) Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Entomol Zool (Jpn) 36:387–392 doi:10.1303/aez.2001.387

    Article  Google Scholar 

  • Trimble MR, Knowles NR (1995) Influence of vesicular-arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber (Cucumis sativus L.) plants during establishment. Can J Plant Sci/Rev Can Phytotech 75:239–280

    Google Scholar 

  • Waceke JW, Waudo SW, Sikora R (2001) Suppression of Meloidogyne hapla by arbuscular mycorrhizal fungi (AMF) on pyrethrum in Kenya. Int J Pest Manage 47:135–140 doi:10.1080/09670870151130633

    Article  Google Scholar 

  • Williamson VM (1998) Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293 doi:10.1146/annurev.phyto.36.1.277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Chinese National High Technology Development Program (Project No. 2006AA10Z423) and the British Council with the UK Department for International Development through their Development Partnerships in Higher Education program (Project DelPHE 1.64). We thank Dr. Y. S. Wang of the Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, for the generous donation of the three fungal isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhang, J., Christie, P. et al. Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biol Fertil Soils 45, 205–211 (2008). https://doi.org/10.1007/s00374-008-0329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0329-8

Keywords

Navigation