Skip to main content
Log in

Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achatz JG, Martinez P (2012) The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Front Zool 9(1):27

    Article  PubMed Central  PubMed  Google Scholar 

  • Ahmed M, Xu J, Xu PX (2012) EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 139(11):1965–1977

    Google Scholar 

  • Amemiya CT, Alfoldi J, Lee AP, Fan S, Philippe H, MacCallum I, Braasch I, Manousaki T, Schneider I, Rohner N (2013) The African coelacanth genome provides insights into tetrapod evolution. Nature 496(7445):311–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47(7–8):563–571

    PubMed  Google Scholar 

  • Arendt D, Hausen H, Purschke G (2009) The ‘division of labour’ model of eye evolution. Philos Trans R Soc Lond B Biol Sci 364(1531):2809–2817

    Article  PubMed  Google Scholar 

  • Arkett SA, Mackie GO, Meech RW (1988) Hair cell mechanoreception in a jellyfish Aglantha digitale. J Exp Biol 135:329–342

    Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Auditory System. Springer, Berlin, pp 159–212

  • Batuecas-Caletrio A, Trinidad-Ruiz G, Schaezk C, Pozo Del, de Dios J, de Toro Gil L, Martin-Sanchez V, Martin-Sanz E (2013) Benign paroxysmal positional vertigo in the elderly. Gerontology 59(5):408–412

    Article  PubMed  Google Scholar 

  • Beisel KW, Wang-Lundberg Y, Maklad A, Fritzsch B (2005) Development and evolution of the vestibular sensory apparatus of the mammalian ear. J Vestib Res 15(5):225–241

    PubMed  Google Scholar 

  • Beisel KW, He D, Hallworth R, Fritzsch B (2007) Genetics of mechanoreceptor evolution and development. In: Oertel D, Dallos P (eds) The senses: a comprehensive reference. Elsevier, New York, pp 75–105

    Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284(5421):1837–1841

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H, Budelmann BU, Bullock TH (1991) Peripheral and central nervous responses evoked by small water movements in a cephalopod. J Comp Physiol [A] 168(2):247–257

    CAS  Google Scholar 

  • Bok J, Chang W, Wu DK (2007) Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol 51(6–7):521–533

    Article  CAS  PubMed  Google Scholar 

  • Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89

    Article  PubMed Central  PubMed  Google Scholar 

  • Breuer J (1873) Ueber die Bogengaenge des Labyrinths; Vorlaeufige Mitteilung. Anz Ges d Aerzte 7:15–18

    Google Scholar 

  • Budelmann B-U (1988) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Sensory biology of aquatic animals. Springer, Berlin, pp 757–782

  • Budelmann B (1992) Hearing in Nonarthropod Invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 141–155

    Chapter  Google Scholar 

  • Budelmann BU, Bleckmann H (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J Comp Physiol [A] 164(1):1–5

    Article  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Freeman, W.H

    Google Scholar 

  • Burighel P, Caicci F, Manni L (2011) Hair cells in non-vertebrate models: lower chordates and molluscs. Hear Res 273(1–2):14–24

    Article  CAS  PubMed  Google Scholar 

  • Candiani S, Moronti L, De Pietri Tonelli D, Garbarino G, Pestarino M (2011) A study of neural-related microRNAs in the developing amphioxus. Evodevo 2:15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlstrom D, Engstrom H (1955) The ultrastructure of statoconia. Acta Otolaryngol 45(1):14–18

    Article  CAS  PubMed  Google Scholar 

  • Chagnaud BP, Simmers J, Straka H (2012) Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling. Biol Cybern 106(11–12):669–679

    Article  PubMed  Google Scholar 

  • Chang W, Brigande JV, Fekete DM, Wu DK (2004) The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131(17):4201–4211

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Lin Z, Kulessa H, Hebert J, Hogan BL, Wu DK (2008) Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements. PLoS Genet 4(4):e1000050

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12

    Google Scholar 

  • Combes D, Le Ray D, Lambert FM, Simmers J, Straka H (2008) An intrinsic feed-forward mechanism for vertebrate gaze stabilization. Curr Biol 18(6):R241–R243

    Article  CAS  PubMed  Google Scholar 

  • Dabdoub A, Kelley MW (2005) Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J Neurobiol 64(4):446–457

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  • Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N (2011) Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357(1):73–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Burlet HM (1934) Vergleichende Anatomie des statoakustischen Organs. a) Die innere Ohrsphäre. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der Vergleichenden Anatomie der Wirbeltiere, vol 2. Urban and Schwarzenberg, Berlin, pp 1293–1432

  • Duncan JS, Fritzsch B (2012) Evolution of Sound & Balance Perception: innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of Corti. J Anatomy 295:1760–1774

    Google Scholar 

  • Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS ONE 8(4):e62046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elliott KL, Houston DW, Fritzsch B (2013) Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target. PLoS ONE 8(2):e55541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ, Manning G, Lang BF, Haas B, Nusbaum C, King N (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 14(2):R15

    Article  PubMed  Google Scholar 

  • Fritzsch B (1987) The inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (1996) Similarities and differences in lancelet and craniate nervous systems. Isr J Zool 42:147–160

    Google Scholar 

  • Fritzsch B (1998) Evolution of the vestibulo-ocular system. Otolaryngol Head Neck Surg 119(3):182–192

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (1999) Hearing in two worlds: Theoretical and realistic adaptive changes of the aquatic and terrestrial ear for sound reception. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer handbook of auditory research. Springer, New York, pp 15–42

    Google Scholar 

  • Fritzsch B, Glover JC (2007) Evolution of the deuterostome central nervous system: an intercalation of developmental patterning processes with cellular specification processes. In: Kaas JH (ed) Evolution of nervous systems vol 2. Academic Press, Oxford, pp 1–24

    Chapter  Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system (Amphibia, Gymnophiona). Zoomorphology 108(4):201–217

    Article  Google Scholar 

  • Fritzsch B, Beisel KW, Bermingham NA (2000) Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. Neuroreport 11(17):R35–R44

    CAS  Google Scholar 

  • Fritzsch B, Beisel KW, Hansen LA (2006) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bio Essays 28(12):1181–1193

    CAS  Google Scholar 

  • Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51(6–7):663–678

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Eberl DF, Beisel KW (2010) The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 67(18):3089–3099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T (2013) Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 15(1):63–79

    Article  PubMed  Google Scholar 

  • Fujimoto S, Oisi Y, Kuraku S, Ota KG, Kuratani S (2013) Non-parsimonious evolution of hagfish Dlx genes. BMC Evol Biol 13:15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gehring WJ (2011) Chance and necessity in eye evolution. Genome Biol Evol 3:1053–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodyear RJ, Richardson GP (2002) Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: molecular and structural diversity. J Neurobiol 53(2):212–227

    Article  CAS  PubMed  Google Scholar 

  • Goodyear RJ, Jones SM, Sharifi L, Forge A, Richardson GP (2012) Hair bundle defects and loss of function in the vestibular end organs of mice lacking the receptor-like inositol lipid phosphatase PTPRQ. J Neurosci 32(8):2762–2772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hader DP, Lebert M, Richter P, Ntefidou M (2003) Gravitaxis and graviperception in flagellates. Adv Space Res 31(10):2181–2186

    Article  PubMed  Google Scholar 

  • Haeckel EHPA (1877) Anthropogenie, oder, Entwicklungsgeschichte des Menschen: Keimes-und Stammesgeschichte. W. Engelmann, Leipzig

    Google Scholar 

  • Hagelin L-O (1974) Development of the membranous labyrinth in lampreys. Acta Zoologica Suppl, pp 1–218

  • Hassan BA, Bellen HJ (2000) Doing the MATH: is the mouse a good model for fly development? Genes Dev 14(15):1852–1865

    CAS  PubMed  Google Scholar 

  • Heimberg AM, Cowper-Sal-lari R, Semon M, Donoghue PC, Peterson KJ (2010) microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci USA 107(45):19379–19383

    Article  CAS  PubMed  Google Scholar 

  • Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, Friedman TB, Kelley MW, Avraham KB (2004) Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet 13(18):2143–2153

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341(6241):397–404

    Article  CAS  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS ONE 5(7):e11661

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones GM, Spells KE (1963) A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc Roy Soc B 157:403–419

    Article  CAS  Google Scholar 

  • Jorgensen JM (1989) Evolution of octavolateralis sensory cells. In: Coombs S, Goerner P, Muenz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 99–115

    Google Scholar 

  • Joyce Tang W, Chen JS, Zeller RW (2013) Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 378:183–193

    Article  CAS  PubMed  Google Scholar 

  • Kim P, Helms AW, Johnson JE, Zimmerman K (1997) XATH-1, a vertebrate homolog of Drosophila atonal, induces a neuronal differentiation within ectodermal progenitors. Dev Biol 187(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Kitajiri S, Sakamoto T, Belyantseva IA, Goodyear RJ, Stepanyan R, Fujiwara I, Bird JE, Riazuddin S, Ahmed ZM, Hinshaw JE, Sellers J, Bartles JR, Hammer JA 3rd, Richardson GP, Griffith AJ, Frolenkov GI, Friedman TB (2010) Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell 141(5):786–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klisch TJ, Xi Y, Flora A, Wang L, Li W, Zoghbi HY (2011) In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proc Natl Acad Sci USA 108(8):3288–3293

    Article  CAS  PubMed  Google Scholar 

  • Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–221

    Article  CAS  PubMed  Google Scholar 

  • Kopecky B, Johnson S, Schmitz H, Santi P, Fritzsch B (2012) Scanning thin-sheet laser imaging microscopy elucidates details on mouse ear development. Dev Dyn 241(3):465–480

    Article  PubMed  Google Scholar 

  • Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J (2003) Role of pax genes in eye evolution. A Cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5(5):773–785

    Article  CAS  PubMed  Google Scholar 

  • Ladich F, Popper AN (2004) Parallel evolution of fish hearing organs. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 95–127

    Chapter  Google Scholar 

  • Lamb TD (2011) Evolution of the eye. Scientists now have a clear vision of how our notoriously complex eye came to be. Sci Am 305(1):64–69

    Article  PubMed  Google Scholar 

  • Lamb TD (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 36:52–119

    Article  CAS  PubMed  Google Scholar 

  • Lambert FM, Combes D, Simmers J, Straka H (2012) Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion. Curr Biol 22(18):1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Lewis ER, Fay RR (2004) Environmental variables and the fundamental nature of hearing. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 27–54

    Chapter  Google Scholar 

  • Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Comparative hearing: fish and amphibians. Springer, Berlin, pp 101–154

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC Press, Boca Raton

    Google Scholar 

  • Mach E (1873) Physikalische Versuche ueber den Gleichgewischtssinn des Menschen. S Ber Akad Wiss Wien math-naturw K1 68 (3):124-140

  • Markl H (1974) The perception of gravity and of angular acceleration in invertebrates. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI/1 vestibular system. Springer, Berlin, pp 17–74

    Google Scholar 

  • Mazan S, Jaillard D, Baratte B, Janvier P (2000) Otx1 gene-controlled morphogenesis of the horizontal semicircular canal and the origin of the gnathostome characteristics. Evol Dev 2(4):186–193

    Article  CAS  PubMed  Google Scholar 

  • Melvill Jones G (1974) The functional significance of semicircular canal size. In: Kornhuber HH (ed) Vestibular System, Handbook of Sensory Physiology, vol VI/1. Springer, Berlin, pp 171–184

    Google Scholar 

  • Mock B, Jones TA, Jones SM (2012) Gravity receptor aging in the CBA/CaJ strain: a comparison to auditory aging. J Assoc Res Otolaryngol 12(2):173–183

    Article  Google Scholar 

  • Moody SA, Klein SL, Karpinski BA, Maynard TM, LaMantia A-S (2013) On becoming neural: what the embryo can tell us about differentiating neural stem cells. Am J Stem Cells 2(2):74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, Sakuma R, Luga V, Roncari L, Attisano L, Wrana JL (2009) Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137(2):295–307

    Article  CAS  PubMed  Google Scholar 

  • Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B (2008) Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334(3):339–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Northcutt RG (1988a) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Goerner P, Muenz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Heidelberg, pp 17–78

  • Northcutt RG (1988b) Sensory and Other Neural Traits and the Adaptationist Program: Mackerels of San Marco? In: Sensory Biology of Aquatic Animals. Springer, Berlin, pp 869–883

  • Pan N, Kopecky B, Jahan I, Fritzsch B (2012) Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 349:415–432

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan B, Geleoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79(3):504–515

    Google Scholar 

  • Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227(2):203–215

    Article  CAS  PubMed  Google Scholar 

  • Pauley S, Lai E, Fritzsch B (2006) Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235(9):2470–2482

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470(7333):255–258

    Article  CAS  PubMed  Google Scholar 

  • Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA (2008) MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 10(1):106–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabbitt RD (1999) Directional coding of three-dimensional movements by the vestibular semicircular canals. Biol Cybern 80(6):417–431

    Article  CAS  PubMed  Google Scholar 

  • Repass JJ, Watson GM (2001) Anemone repair proteins as a potential therapeutic agent for vertebrate hair cells: facilitated recovery of the lateral line of blind cave fish. Hear Res 154(1–2):98–107

    Article  CAS  PubMed  Google Scholar 

  • Retzius A (1881) Das Gehörorgan der Wirbeltiere: I. Das Gehörorgan der Anamnier. Samson and Wallin, Stockholm

    Google Scholar 

  • Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18(15):1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Schwander M, Kachar B, Muller U (2010) Review series: the cell biology of hearing. J Cell Biol 190(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Seipel K, Yanze N, Schmid V (2004) Developmental and evolutionary aspects of the basic helix-loop-helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish. Dev Biol 269(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Mobius W, Howard J, Gopfert MC (2012) Drosophila auditory organ genes and genetic hearing defects. Cell 150(5):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Short S, Kozmik Z, Holland LZ (2012) The function and developmental expression of alternatively spliced isoforms of amphioxus and Xenopus laevis Pax2/5/8 genes: revealing divergence at the invertebrate to vertebrate transition. J Exp Zool B Mol Dev Evol 318(7):555–571

    Article  CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457(7231):818–823

    Article  CAS  PubMed  Google Scholar 

  • Spoor F, Bajpai S, Hussain ST, Kumar K, Thewissen JG (2002) Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417(6885):163–166

    Article  CAS  PubMed  Google Scholar 

  • Steyger PS, Wiederhold ML (1995) Visualization of newt aragonitic otoconial matrices using transmission electron microscopy. Hear Res 92(1–2):184–191

    Article  CAS  PubMed  Google Scholar 

  • Straka H (2010) Ontogenetic rules and constraints of vestibulo-ocular reflex development. Curr Opin Neurobiol 20(6):689–695

    Article  CAS  PubMed  Google Scholar 

  • Straka H, Dieringer N (2004) Basic organization principles of the VOR: lessons from frogs. Prog Neurobiol 73(4):259–309

    Article  CAS  PubMed  Google Scholar 

  • Straka H, Holler S, Goto F (2002) Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons. J Neurophysiol 88(5):2287–2301

    Article  CAS  PubMed  Google Scholar 

  • Taylor KM, Labonne C (2005) SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev Cell 9(5):593–603

    Article  CAS  PubMed  Google Scholar 

  • Von Salvini-Plawen L, Mayr E (1977) On the Evolution of Photorecptors and Eyes. Plenum Press, NewYork

  • Vopalensky P, Pergner J, Liegertova M, Benito-Gutierrez E, Arendt D, Kozmik Z (2012) Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proc Natl Acad Sci USA 109(38):15383–15388

    Article  CAS  PubMed  Google Scholar 

  • Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ (2003) The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130(1):221–232

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol 12(18):1611–1616

    Article  CAS  PubMed  Google Scholar 

  • Warchol ME, Montcouquiol M (2010) Maintained expression of the planar cell polarity molecule Vangl2 and reformation of hair cell orientation in the regenerating inner ear. J Assoc Res Otolaryngol 11(3):395–406

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu LQ, Dickman JD (2011) Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr Biol 21(5):418–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA base grant (BF) and P30 DC 010362 (BF), and by the German Science Foundation (CRC 870, TP B12) and the German Federal Ministry of Education and Research under the Grant code 01 EO 0901 to HS. We express our thanks to the Roy. J. Carver foundation for the purchase of the Leica TCS SP5 confocal microscope and the Office of the Vice President for Research for support and Karen Elliott for linguistic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritzsch, B., Straka, H. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp Physiol A 200, 5–18 (2014). https://doi.org/10.1007/s00359-013-0865-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0865-z

Keywords

Navigation