Skip to main content

Advertisement

Log in

The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In mouse ear development, two bHLH genes, Atoh1 and Neurog1, are essential for hair cell and sensory neuron differentiation. Evolution converted the original simple atonal-dependent neurosensory cell formation program of diploblasts into the derived developmental program of vertebrates that generates two neurosensory cell types, the sensory neuron and the sensory hair cell. This transformation was achieved through gene multiplication in ancestral triploblasts resulting in the expansion of the atonal bHLH gene family. Novel genes of the Neurogenin and NeuroD families are upregulated prior to the expression of Atoh1. Recent data suggest that NeuroD and Neurogenin were lost or their function in neuronal specification reduced in flies, thus changing our perception of the evolution of these genes. This sequence of expression changes was accompanied by modification of the E-box binding sites of these genes to regulate different downstream genes and to form inhibitory loops among each other, thus fine-tuning expression transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fritzsch B, Pauley S, Feng F, Matei V, Nichols DH (2006) The evolution of the vertebrate auditory system: transformations of vestibular mechanosensory cells for sound processing is combined with newly generated central processing neurons. Int J Comp Psychol 19:1–24

    Google Scholar 

  2. Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA (2008) MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 10:106–113

    Article  CAS  PubMed  Google Scholar 

  3. Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678

    Article  CAS  PubMed  Google Scholar 

  4. Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463–472

    Article  CAS  PubMed  Google Scholar 

  5. Ohsawa R, Kageyama R (2008) Regulation of retinal cell fate specification by multiple transcription factors. Brain Res 1192:90–98

    Article  CAS  PubMed  Google Scholar 

  6. Kawauchi S, Beites CL, Crocker CE, Wu HH, Bonnin A, Murray R, Calof AL (2004) Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium. Dev Neurosci 26:166–180

    Article  CAS  PubMed  Google Scholar 

  7. Maklad A, Fritzsch B (2003) Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 60:497–510

    Article  PubMed  Google Scholar 

  8. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    Article  CAS  PubMed  Google Scholar 

  9. Fritzsch B, Beisel KW, Bermingham NA (2000) Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. Neuroreport 11:R35–R44

    Article  CAS  PubMed  Google Scholar 

  10. Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    Article  CAS  PubMed  Google Scholar 

  11. Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854

    Article  CAS  PubMed  Google Scholar 

  12. Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY (2005) Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 233:570–583

    Article  CAS  PubMed  Google Scholar 

  13. Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143

    Article  CAS  PubMed  Google Scholar 

  14. Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426

    CAS  PubMed  Google Scholar 

  15. Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    Article  CAS  PubMed  Google Scholar 

  16. Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134:4405–4415

    Article  CAS  PubMed  Google Scholar 

  17. Kruger M, Schmid T, Kruger S, Bober E, Braun T (2006) Functional redundancy of NSCL-1 and NeuroD during development of the petrosal and vestibulocochlear ganglia. Eur J Neurosci 24:1581–1590

    Article  PubMed  Google Scholar 

  18. Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, Kelley MW (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A 105:18396–18401

    Article  CAS  PubMed  Google Scholar 

  19. Jahan I, Kersigo J, Pan N, Fritzsch B (2010) Neurod1 regulates survival and formation of connections in the mouse ear and brain. Cell Tissue Res (in press)

  20. Fritzsch B, Beisel KW, Hansen LA (2006) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28:1181–1193

    Article  CAS  PubMed  Google Scholar 

  21. Kageyama R, Ohtsuka T, Kobayashi T (2007) The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134:1243–1251

    Article  CAS  PubMed  Google Scholar 

  22. Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–844

    Article  CAS  PubMed  Google Scholar 

  23. Rogers CD, Moody SA, Casey ES (2009) Neural induction and factors that stabilize a neural fate. Birth Defects Res C Embryo Today 87:249–262

    Article  CAS  PubMed  Google Scholar 

  24. Simionato E, Kerner P, Dray N, Le Gouar M, Ledent V, Arendt D, Vervoort M (2008) atonal- and achaete-scute-related genes in the annelid Platynereis dumerilii: insights into the evolution of neural basic-Helix-Loop-Helix genes. BMC Evol Biol 8:170

    Article  PubMed  Google Scholar 

  25. Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7:33

    Article  PubMed  Google Scholar 

  26. Stevens JD, Roalson EH, Skinner MK (2008) Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family: genomic approach to cellular differentiation. Differentiation 76:1006–1022

    CAS  PubMed  Google Scholar 

  27. Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5:226

    Article  PubMed  Google Scholar 

  28. Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    Article  CAS  PubMed  Google Scholar 

  29. Powell LM, Deaton AM, Wear MA, Jarman AP (2008) Specificity of Atonal and Scute bHLH factors: analysis of cognate E box binding sites and the influence of senseless. Genes Cells 13:915–929

    Article  CAS  PubMed  Google Scholar 

  30. Powell LM, Jarman AP (2008) Context dependence of proneural bHLH proteins. Curr Opin Genet Dev 18:411–417

    Article  CAS  PubMed  Google Scholar 

  31. Nakada Y, Parab P, Simmons A, Omer-Abdalla A, Johnson JE (2004) Separable enhancer sequences regulate the expression of the neural bHLH transcription factor neurogenin 1. Dev Biol 271:479–487

    Article  CAS  PubMed  Google Scholar 

  32. Millimaki BB, Sweet EM, Dhason MS, Riley BB (2007) Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134:295–305

    Article  CAS  PubMed  Google Scholar 

  33. Goulding SE, zur Lage P, Jarman AP (2000) Amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78

    Article  CAS  PubMed  Google Scholar 

  34. Goulding SE, White NM, Jarman AP (2000) cato encodes a basic helix-loop-helix transcription factor implicated in the correct differentiation of Drosophila sense organs. Dev Biol 221:120–131

    Article  CAS  PubMed  Google Scholar 

  35. Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbi HY (2000) Functional conservation of atonal and Math1 in the CNS and PNS. Development 127:1039–1048

    CAS  PubMed  Google Scholar 

  36. Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol 12:1611–1616

    Article  CAS  PubMed  Google Scholar 

  37. Maung SM, Jarman AP (2007) Functional distinctness of closely related transcription factors: a comparison of the Atonal and Amos proneural factors. Mech Dev 124:647–656

    Article  CAS  PubMed  Google Scholar 

  38. Hufnagel RB, Riesenberg AN, Saul SM, Brown NL (2007) Conserved regulation of Math5 and Math1 revealed by Math5-GFP transgenes. Mol Cell Neurosci 36:435–448

    Article  CAS  PubMed  Google Scholar 

  39. Sun Y, Jan LY, Jan YN (1998) Transcriptional regulation of atonal during development of the Drosophila peripheral nervous system. Development 125:3731–3740

    CAS  PubMed  Google Scholar 

  40. zur Lage PI, Powell LM, Prentice DR, McLaughlin P, Jarman AP (2004) EGF receptor signaling triggers recruitment of Drosophila sense organ precursors by stimulating proneural gene autoregulation. Dev Cell 7:687–696

    Article  PubMed  Google Scholar 

  41. Holohan EE, zur Lage PI, Jarman AP (2006) Multiple enhancers contribute to spatial but not temporal complexity in the expression of the proneural gene, amos. BMC Dev Biol 6:53

    Article  PubMed  Google Scholar 

  42. Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE (2001) Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31:219–232

    Article  CAS  PubMed  Google Scholar 

  43. Helms AW, Battiste J, Henke RM, Nakada Y, Simplicio N, Guillemot F, Johnson JE (2005) Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development 132:2709–2719

    Article  CAS  PubMed  Google Scholar 

  44. Pan N, Jahan I, Lee JE, Fritzsch B (2009) Defects in the cerebella of conditional Neurod1 null mice correlate with effective Tg(Atoh1-cre) recombination and granule cell requirements for Neurod1 for differentiation. Cell Tissue Res 337:407–428

    Article  CAS  PubMed  Google Scholar 

  45. Ray SK, Leiter AB (2007) The basic helix-loop-helix transcription factor NeuroD1 facilitates interaction of Sp1 with the secretin gene enhancer. Mol Cell Biol 27:7839–7847

    Article  CAS  PubMed  Google Scholar 

  46. Nakada Y, Hunsaker TL, Henke RM, Johnson JE (2004) Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development 131:1319–1330

    Article  CAS  PubMed  Google Scholar 

  47. Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134:3771–3780

    Article  CAS  PubMed  Google Scholar 

  48. Ghysen A, Dambly-Chaudiere C (2000) A genetic programme for neuronal connectivity. Trends Genet 16:221–226

    Article  CAS  PubMed  Google Scholar 

  49. Finger TE (1997) Evolution of taste and solitary chemoreceptor cell systems. Brain Behav Evol 50:234–243

    Article  CAS  PubMed  Google Scholar 

  50. Rasmussen SL, Holland LZ, Schubert M, Beaster-Jones L, Holland ND (2007) Amphioxus AmphiDelta: evolution of Delta protein structure, segmentation, and neurogenesis. Genesis 45:113–122

    Article  CAS  PubMed  Google Scholar 

  51. Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156

    Article  CAS  PubMed  Google Scholar 

  52. Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035

    Article  CAS  PubMed  Google Scholar 

  53. Zou D, Erickson C, Kim EH, Jin D, Fritzsch B, Xu PX (2008) Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear. Hum Mol Genet 17:3340–3356

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki Y, Tsuruga E, Yajima T, Takeda M (2003) Expression of bHLH transcription factors NSCL1 and NSCL2 in the mouse olfactory system. Chem Senses 28:603–608

    Article  CAS  PubMed  Google Scholar 

  55. Ruschke K, Ebelt H, Kloting N, Boettger T, Raum K, Bluher M, Braun T (2009) Defective peripheral nerve development is linked to abnormal architecture and metabolic activity of adipose tissue in Nscl-2 mutant mice. PLoS One 4:e5516

    Article  PubMed  Google Scholar 

  56. Brunelli S, Innocenzi A, Cossu G (2003) Bhlhb5 is expressed in the CNS and sensory organs during mouse embryonic development. Gene Expr Patterns 3:755–759

    Article  CAS  PubMed  Google Scholar 

  57. Ross SE, Mardinly AR, McCord AE, Zurawski J, Cohen S, Jung C, Hu L, Mok SI, Shah A, Savner EM, Tolias C, Corfas R, Chen S, Inquimbert P, Xu Y, McInnes RR, Rice FL, Corfas G, Ma Q, Woolf CJ, Greenberg ME (2010) Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65:886–898

    Article  CAS  PubMed  Google Scholar 

  58. Koundakjian EJ, Appler JL, Goodrich LV (2007) Auditory neurons make stereotyped wiring decisions before maturation of their targets. J Neurosci 27:14078–14088

    Article  CAS  PubMed  Google Scholar 

  59. Satoh T, Fekete DM (2005) Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development 132:1687–1697

    Article  CAS  PubMed  Google Scholar 

  60. Andermann P, Ungos J, Raible DW (2002) Neurogenin1 defines zebrafish cranial sensory ganglia precursors. Dev Biol 251:45–58

    Article  CAS  PubMed  Google Scholar 

  61. Streit A (2007) The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int J Dev Biol 51:447–461

    Article  CAS  PubMed  Google Scholar 

  62. Leon Y, Miner C, Represa J, Giraldez F (1992) Myb p75 oncoprotein is expressed in developing otic and epibranchial placodes. Dev Biol 153:407–410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by a NIH-NIDCD grant (R01-DC005590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritzsch, B., Eberl, D.F. & Beisel, K.W. The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell. Mol. Life Sci. 67, 3089–3099 (2010). https://doi.org/10.1007/s00018-010-0403-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0403-x

Keywords

Navigation