Skip to main content

Parallel Evolution in Fish Hearing Organs

  • Chapter
Evolution of the Vertebrate Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

Fishes, as broadly defined to include agnathans (jawless fishes), cartilaginous fishes, and bony fishes, are the earliest vertebrates (Fig. 4.1). Because an inner ear is found in the fossil record of the most primitive jawless vertebrates (Forey and Janvier (1994), it is reasonable to assume that the ear, and possibly hearing, arose quite early in this group or was present in their ancestral chordates. Although there has been some suggestion that vertebrate inner-ear sensory hair cells may be derived from a statocyst-like system invertebrate mechanoreceptive cell, this is very much open to question (reviewed in Coffin et al., Chapter 3). More importantly for this chapter, it is highly likely that the vertebrate ear arose de novo in this group or perhaps in craniate ancestors (see van Bergeijk 1967 and Wever 1974 for a discussion of the origin of the vertebrate ear and Lewis and Fay, Chapter 2, for a discussion of the origin of hearing).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RMcN (1964) The structure of the Weberian apparatus in the Siluri. Proc Zool Soc Lond 142:419–440.

    Google Scholar 

  • Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysine fishes. J Acoust Soc Am 113:2170–2179.

    PubMed  Google Scholar 

  • Astrup J (1999) Ultrasound detection in fish—a parallel to the sonar-mediated detection of bats by ultrasound-sensitive insects. Comp Biochem Physiol 124:19–27.

    CAS  Google Scholar 

  • Astrup J, Møhl B (1993) Detection of intense ultrasound by the cod Gadus morhua. J Exp Biol 182:71–80.

    Google Scholar 

  • Ayers H (1892). Vertebrate cephalogenesis. J Morphol 6:1–360.

    Google Scholar 

  • Bader R (1937) Bau, Entwicklung und Funktion des akzessorischen Atmungsorgans der Labyrinthfische. Z wiss Zool Leipzig 149:323–401.

    Google Scholar 

  • Bardack D (1998) Relationships of living and fossil hagfishes. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. London: Chapman and Hall, pp. 3–14.

    Google Scholar 

  • Blaxter JH, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 39–56.

    Google Scholar 

  • Bleckmann H, Niemann D, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314:462–466.

    Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. The Perceptual Organisation of Sound. Cambridge: MIT Press.

    Google Scholar 

  • Bridge TW, Haddon AC (1889) Contributions to the anatomy of fishes. I. The airbladder and Weberian ossicles in the Siluridae. Proc R Soc Lond 46:309–328.

    Google Scholar 

  • Bridge TW, Haddon AC (1892) Contribution s to the anatomy of fishes. II. The airbladder and Weberian ossicles in the Siluridae. Proc R Soc Lond 184:65–324.

    Google Scholar 

  • Burighel P, Lane NJ, Fabio G, Stefano T, Zaniolo G, Carnevali MDC, Manni L (2003) Novel, secondary sensory cell organ in ascidians: in search of the ancestor of the vertebrate lateral line. J Comp Neurol 461:236–249.

    PubMed  Google Scholar 

  • Canfield JG, Eaton RC (1990) Swimbladder acoustic pressure transduction initiates Mauthner-mediated escape. Nature 347:760–762.

    Google Scholar 

  • Canfield JG, Rose GJ (1996) Hierarchical sensory guidance of Mauthner-mediated escape response in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni). Brain Behav Evol 48:137–156.

    PubMed  CAS  Google Scholar 

  • Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125:441–463.

    Google Scholar 

  • Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua L. J Comp Physiol [A] 85:147–167.

    Google Scholar 

  • Chardon M (1968) Anatomie comparee de l’appareil de Weber et des structures connexes chez les Siluriformes. Musee Royal de l’afrique Centrale, Tervuren, Belgique. Annales, Serie in 8, Sciences Zoologiques 169:1–273.

    Google Scholar 

  • Chranilov NS (1927) Beiträge zur Kenntnis des Weber’schen Apparates der Ostariophysi 1. Vergleichend-anatomische Übersicht der Knochenelemente des Weber’schen Apparates bei Cypriniformes. Zool Jb Anat 49:501–597.

    Google Scholar 

  • Chranilov NS (1929) Beiträge zur Kenntnis des Weber’schen Apparates der Ostariophysi: 2. Der Weber’sche Apparat bei Siluroidea. Zool Jb Anat 51:323–462.

    Google Scholar 

  • Coburn MM, Grubach PG (1998) Ontogeny of the Weberian apparatus in the armored catfish Corydoras paleatus (Siluriformes: Callichthyidae). Copeia 301–311.

    Google Scholar 

  • Connaughton MA, Taylor MH (1996) Drumming, courtship, and spawning behavior in captive weakfish, Cynoscion regalis. Copeia 195–199.

    Google Scholar 

  • Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol 132:203–207.

    Google Scholar 

  • Corwin JT (1981) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp.81–102.

    Google Scholar 

  • Corwin JT (1989) Functional anatomy of the auditory system in sharks and rays. J Exp Zool Suppl 2:62–74.

    Google Scholar 

  • Crawford JD (1993) Central auditory neurophysiology of a sound-producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae). J Comp Physiol [A] 172: 139–152.

    CAS  Google Scholar 

  • Crawford JD, Cook AP, Heberlein AS (1997) Bioacoustic behavior of African fishes (Monnyridae): potential cues for species and individual recognition in Pollimyrus. J Acoust Soc Am 102:1–13.

    Google Scholar 

  • de Burlet HM (1934) Vergleichende Anatomie des stato-akustischen Organs. a) Die innere Ohrsphare. In: Bolk L, Goppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere. Berlin: Urban and Schwarzenberg, pp. 1293–1380.

    Google Scholar 

  • Deng X, Wagner H-J, Popper AN (2002) Messages from the bottom of the Atlantic Ocean: comparative studies of anatomy and ultrastructure of the inner ears of several Gadiform deep-sea fishes. Abst Assoc Res Otolaryngol 25:101.

    Google Scholar 

  • de Vries HL (1950) The mechanics of the labyrinth otoliths. Acta Oto-Laryngol 38: 262–273.

    Google Scholar 

  • Fay RR (1974) Masking of tones by noise for the goldfish (Carassius auratus). J Comp Physiol Psychol 87:708–716.

    PubMed  CAS  Google Scholar 

  • Fay RR (1982) Neural mechanisms of an auditory temporal discrimination by the goldfish. J Comp Physiol [A] 147:201–216.

    Google Scholar 

  • Fay RR (1985) Temporal processing by the auditory system of fishes. In: Michelsen A (ed) Time Resolution in Auditory Systems. New York: Springer-Verlag, pp. 28–57.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: HillFay Associates.

    Google Scholar 

  • Fay RR (1998) Auditory stream segregation in goldfish (Carassius auratus). Hear Res 120:69–76.

    PubMed  CAS  Google Scholar 

  • Fay RR (2000) Frequency contrasts underlying auditory stream segregation in goldfish. J Assoc Res Otolaryngol 1:120–128.

    PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN (1974) Acoustic stimulation of the ear of the goldfish (Carassius auratus). J Exp Biol 61:243–260.

    PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN (1975) Modes of stimulation of the teleost ear. J Exp Biol 62:379–387.

    PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10.

    PubMed  CAS  Google Scholar 

  • Fay RR, Kendall JI, Popper AN, Tester AL (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol 47A:1235–1240.

    Google Scholar 

  • Fay RR, Ahroon WA, Orawski AA (1978) Auditory masking patterns in the goldfish (Carassius auratus): psychophysical tuning curves. J Exp Biol 74:83–100.

    PubMed  CAS  Google Scholar 

  • Fay RR, Yost WA, Coombs SL (1983) Psychophysics and neurophysiology of repetition noise processing in a vertebrate auditory system. Hear Res 12:31–55.

    PubMed  CAS  Google Scholar 

  • Fine ML, Ladich F (2003). Sound production, spine locking, and related adaptations. In: Arratia G, Kapoor BG, Chardon M, Diogo M (eds) Catfishes, vol 1. Enfield, NH: Science Publisher, Inc., pp. 249–290.

    Google Scholar 

  • Fink SV, Fink WL (1996) Interrelationships of ostariophysan fishes. In: Stiassny MLJ, Pasenti LR, Johnson GO (eds) Interrelationships of Fishes. San Diego, CA: Academic Press, pp. 209–249.

    Google Scholar 

  • Fish MP, Offutt GC (1972) Hearing threshold from toadfish, Opsanus tau, measured in the laboratory and field. J Acoust Soc Am 51:1318–1321.

    PubMed  CAS  Google Scholar 

  • Fletcher LB, Crawford JD (2001) Acoustic detection by sound-producing fishes (Mormyridae): the role of gas-filled tympanic bladders. J Exp Biol 204:175–183.

    PubMed  CAS  Google Scholar 

  • Forey P, Janvier P (1994) Evolution of the early vertebrates. Am Sci 82:554–565.

    Google Scholar 

  • Fritzsch B (1999) Hearing in two worlds: theoretical and actual adaptive changes of the aquatic and terrestrial ear for sound reception. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 15–42.

    Google Scholar 

  • Fritzsch B, Signore M, Simeone A (2001) Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Dev Genes Evol 211:388–396.

    PubMed  CAS  Google Scholar 

  • Gerald JW (1971) Sound production in six species of sunfish (Centrarchidae). Evolution 25:75–87.

    Google Scholar 

  • Hawkins AD (1993) Underwater sound and fish behaviour. In: Pitcher TJ (ed) Behaviour of Teleost Fishes. London: Chapman and Hall, pp. 129–169.

    Google Scholar 

  • Hawkins AD, Johnstone ADF (1978) The hearing of the Atlantic Salmon, Salmon salar. J Fish Biol 13:655–673.

    Google Scholar 

  • Hawkins AD, MacLennan DN (1976) An acoustic tank for hearing studies on fish. In: Schuijf A (ed) Sound Reception in Fish. Amsterdam: Elsevier, pp. 149–169.

    Google Scholar 

  • Hawkins AD, Myrberg AA (1983) Hearing and sound communication underwater. In: Lewis B (ed) Bioacoustics: A Comparative Approach. London: Academic Press, pp. 347–405.

    Google Scholar 

  • Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 115–129.

    Google Scholar 

  • Hoy RR (1998) Acute as a bug’s ear: an informal discussion of hearing in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative Hearing: Insects. New York: Springer-Verlag, pp. 1–17.

    Google Scholar 

  • Jacobs DW, Tavolga WN (1967). Acoustic intensity limens in the goldfish. Anim Behav 15:324–335.

    PubMed  CAS  Google Scholar 

  • Jenkins DB (1977) A light microscopic study of the saccule and lagena in certain catfish. Am J Anat 150:605–630.

    PubMed  CAS  Google Scholar 

  • Johnston CE, Johnson DL (2000) Sound production in Pimephales notatus (Rafinesque) (Cyprinidae). Copeia 567–571.

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Karlsen HE (1992a) Infrasound sensitivity in the plaice (Pleuronectes platessa). J Exp Biol 171:173–187.

    Google Scholar 

  • Karlsen HE (1992b) The inner ear is responsible for detection of infrasound in the perch (Perca fluviatilis). J Exp Zool 171:163–172.

    Google Scholar 

  • Kleerekoper H, Roggenkamp PA (1959) An experimental study on the effect of the swimbladder on hearing sensitivity in Ameiurus nebulosus (Lesueur). Can J Zool 37: 1–8.

    Google Scholar 

  • Knudsen FR, Enger PS, Sand O (1992) Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, Salmo salar L. J Fish Biol 40:523–534.

    Google Scholar 

  • Konishi M (1970) Comparative neurophysiological studies of hearing and vocalizations in songbirds. Z Vergl Physiol 66:257–272.

    Google Scholar 

  • Kratochvil H (1985) Beiträge zur Lautbiologie der Anabantoidei-Bau, Funktion und Entwicklung von lauterzeugenden Systemen. Zool Jb Anat 89:203–255.

    Google Scholar 

  • Ladich F (1988) Sound production by the gudgeon, Gobio gobio L., a common European freshwater fish (Cyprinidae, Teleostei). J Fish Biol 32:707–715.

    Google Scholar 

  • Ladich F (1999) Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behav Evol 53:288–304.

    PubMed  CAS  Google Scholar 

  • Ladich F (2000) Acoustic communication and the evolution of hearing in fishes. Philos Trans R Soc Lond 355:1285–1288.

    CAS  Google Scholar 

  • Ladich F (2001) The sound-generating (and-detecting) motor system in catfishes: design of swimbladder muscles in doradids and pimelodids. Anat Rec 263:297–306.

    PubMed  CAS  Google Scholar 

  • Ladich F, Bass AH (1998) Sonic/vocal motor pathways in catfishes: comparison with other teleosts. Brain Behav Evol 51:315–330.

    PubMed  CAS  Google Scholar 

  • Ladich F, Bass AH (2003a) Underwater sound generation and acoustic reception in fishes with some notes on frogs. In: Collin SP, Marshall NJ (eds) Sensory Processing in Aquatic Environments. New York: Springer-Verlag, pp. 173–193.

    Google Scholar 

  • Ladich F, Bass AH (2003b) Audition. In: Arratia G, Kapoor BG, Chardon M, Diogo R (eds) Catfishes, vol 2. Enfield, NH: Science Publishers, Inc., pp. 701–730.

    Google Scholar 

  • Ladich F, Fine ML (1994) Localization of swimb1adder and pectoral motoneurons involved in sound production in pimelodid catfish. Brain Behav Evol 44:86–100.

    PubMed  CAS  Google Scholar 

  • Ladich F, Kratochvil H (1989) Sound production by the marmoreal goby, Protherorhinus marmoratus (Pallas) (Gobiidae, Teleostei). Zool Jb Physiol 93:501–504.

    Google Scholar 

  • Ladich F, Popper AN (2001) Comparison of the inner ear ultrastructure between teleost fishes using different channels for communication. Hear Res 154:62–72.

    PubMed  CAS  Google Scholar 

  • Ladich F, Tadler A (1988) Sound production in Polypterus (Osteichthyes: Polypteridae). Copeia 1076–1077.

    Google Scholar 

  • Ladich F, Wysocki LE (2003) How does tripus extirpation affect auditory sensitivity in goldfish? Hear Res. 182:119–129.

    PubMed  Google Scholar 

  • Ladich F, Yan HY (1998) Correlation between auditory sensitivity and vocalization in anabantoid fishes. J Comp Physiol [A] 182:737–746.

    CAS  Google Scholar 

  • Ladich F, Bischof C, Schleinzer G, Fuchs A (1992) Intra-and interspecific differences in agonistic vocalization in croaking gouramis (genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics 4:131–141.

    Google Scholar 

  • Laming PR, Morrow G (1981) The contribution of the swimbladder to audition in the roach (Rutilus rutilus). Comp Biochem Physiol [A] 69:537–541.

    Google Scholar 

  • Lewis ER, Narins P (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 101–154.

    Google Scholar 

  • Löwenstein O (1970) The electrophysiological study of the responses of the isolate labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting and mechanical vibration. Proc R Soc Lond B 174:419–434.

    PubMed  Google Scholar 

  • Löwenstein O, Osborne MP (1964) Ultrastructure of the sensory hair cells in the labyrinth of the ammocete larva of the lamprey, Lampetra fluviatilis. Nature 204:97.

    Google Scholar 

  • Löwenstein O, Roberts TDM (1950) The equilibrium function of the otolith organs of the thornback ray (Raja clavatra). J Physiol (Lond) 110:392–415.

    Google Scholar 

  • Löwenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J Physiol (Lond) 114:471–489.

    Google Scholar 

  • Löwenstein O, Thornhill RA (1970) The labyrinth of Myxine, anatomy, ultrastructure and electrophysiology. Proc R Soc Lond B 176:21–42.

    Google Scholar 

  • Lowenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc R Soc Lond B 170:113–134.

    PubMed  CAS  Google Scholar 

  • Lugli M, Fine ML (2003) Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow waters. J Acoust Soc Am 114:512–521.

    PubMed  CAS  Google Scholar 

  • Lugli M, Torricelli P, Pavan G, Mainardi D (1997) Sound production during courtship and spawning among freshwater gobiids (Pisces, Gobiidae). Mar Fresh Behav Physiol 29:109–126.

    Google Scholar 

  • Lychakov DV, Rebane YT (2002) Otoliths and modelling ear function. Bioacoustics 12: 125–128.

    Google Scholar 

  • Mann DA, Lobel PS (1997) Propagation of damselfish (Pomacentridae) courtship sounds. J Acoust Soc Am 101:3783–3791.

    Google Scholar 

  • Mann DA, Lu Z, Popper AN (1997) Ultrasound detection by a teleost fish. Nature 389: 341.

    CAS  Google Scholar 

  • Mann DA, Lu Z, Hastings MC, Popper AN (1998) Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J Acoust Soc Am 104:562–568.

    PubMed  CAS  Google Scholar 

  • Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN (2001) Ultrasound detection by clupeiform fishes. J Acoust Soc Am 109:3048–3054.

    PubMed  CAS  Google Scholar 

  • Markl H (1971) Schallerzeugung bei Piranhas (Serrasalminae, Characidae). Z Vergl Physiol 74:39–56.

    Google Scholar 

  • Markl H (1972) Aggression und Beuteverhalten bei Piranhas (Serrasalminae, Characidae). Z Tierpsychol 30: 190–216.

    PubMed  CAS  Google Scholar 

  • Marshall NB (1967) Sound-producing mechanisms and the biology of deep-sea fishes. In: Tavolga WN (ed) Marine Bio-Acou stics. Oxford, UK: Pergamon Press, pp. 123–133.

    Google Scholar 

  • Marvit P, Crawford JD (2000) Auditory discrimination in a sound-producing electric fish (Pollimyrus): tone frequency and click rate difference detection. J Acoust Soc Am 108:1819–1825.

    PubMed  CAS  Google Scholar 

  • McCormick CA, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephantnose fish, Gnathonemus petersii. J Comp Physiol [A] 155:753–761.

    Google Scholar 

  • McKibben JR, Bass AH (1998) Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J Acoust Soc Am 104:3520–3533.

    PubMed  CAS  Google Scholar 

  • Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae. II. Systeme Nerveux et Organes de Sense. Paris: Centre National de la Recherche Scientifique.

    Google Scholar 

  • Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 395–426.

    Google Scholar 

  • Myrberg AA (2001) The acoustical biology of elasmobranchs. Environ Biol Fishes 60: 31–45.

    Google Scholar 

  • Myrberg AA, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol 140:135–144.

    Google Scholar 

  • Myrberg AA, Kramer E, Heinecke P (1965) Sound production by cichlid fishes. Science 149:555–558.

    PubMed  Google Scholar 

  • Myrberg AA, Ha SJ, Walewski S, Banbury JC (1972) Effectiveness of acoustic signals in attracting epipelagic sharks to an underwater sound source. Bull Mar Sci 22:926–949.

    Google Scholar 

  • Myberg AA, Spanier E, Ha SJ (1978) Temporal patterning in acoustical communication, In: Reese ES, Lighter FJ (eds) Contrasts in Behavior. New York: Wiley and Sons, pp.137–179.

    Google Scholar 

  • Myrberg AA, Mohler M, Catala JD (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34:913–923.

    Google Scholar 

  • Nelson DR, Johnson RH (1976) Some recent observations on acoustic attraction of Pacific reef sharks. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fishes. Amsterdam: Elsevier, pp. 229–239.

    Google Scholar 

  • Nelson JS (1994) Fishes of the World, 3rd ed. New York: John Wiley and Sons.

    Google Scholar 

  • Pennisi E (2003) Modernizing the tree of life. Science 300:1692–1697.

    PubMed  Google Scholar 

  • Plachta DTT, Popper AN (2003) Evasive responses of American shad (Alosa sapidissima) to ultrasonic stimuli. J Assoc Res Otolaryngol 4:25–30.

    Google Scholar 

  • Platt C, Jørgensen JM, Popper AN (2004) The inner ear of the lungfish Protopterus. J Comp Neurol 471:277–278.

    PubMed  Google Scholar 

  • Poggendorf D (1952) Die absolute Hörschwelle des Zwergwelses (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Z Vergl Physiol 34:222–257.

    Google Scholar 

  • Popper AN (1970) Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim Behav 18:552–562.

    Google Scholar 

  • Popper AN (1971) The effects of size on auditory capacities of the goldfish. J Aud Res 11:239–247.

    Google Scholar 

  • Popper AN (1978) Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorhynchus). J Comp Neurol 181:117–128.

    PubMed  CAS  Google Scholar 

  • Popper AN (1980) Scanning electron microscopic studies of the sacculus and lagena in several deep-sea fishes. Am J Anat 157:115–136.

    PubMed  CAS  Google Scholar 

  • Popper AN, Clarke NL (1976) The auditory system of the goldfish (Carassius auratus): effects of intense acoustic stimulation. Comp Biochem Physiol 53A:11–18.

    Google Scholar 

  • Popper AN, Clarke NL (1979) Non-simultaneous auditory masking in the goldfish, Carassius auratus. J Exp Biol 83:145–158.

    PubMed  CAS  Google Scholar 

  • Popper AN, Coombs S (1982) The morphology and evolution of the ear in Actinopterygian fishes. Am Zool 22:311–328.

    Google Scholar 

  • Popper AN, Fay RR (1999) The auditory periphery in fishes. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp.43–100.

    Google Scholar 

  • Popper AN, Hoxter B (1987) Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Brain Behav Evol 30:43–61.

    PubMed  CAS  Google Scholar 

  • Popper AN, Northcutt RG (1983) Structure and innervation of the inner ear of the bowfin, Amia calva. J Comp Neurol 213:279–286.

    Google Scholar 

  • Popper AN, Tavolga WN (1981) Structure and function of the ear in the marine catfish, Arius felis. J Comp Physiol 144:27–34.

    Google Scholar 

  • Popper AN, Platt C, Edds PL (1992) Evolution of the vertebrate inner ear: an overview of ideas. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 49–57.

    Google Scholar 

  • Popper AN, Fay RR, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes In: Collin SP, Marshall NJ (eds) Sensory Processing of the Aquatic Environment. New York: Springer-Verlag, pp. 3–38.

    Google Scholar 

  • Ramacharitar J, Higgs DM, Popper AN (2001) Sciaenid inner ears: a study in diversity. Brain Behav Evol 58:152–162.

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere. I. Das Gehörorgan der Fische und Amphibien. Stockholm: Samson and Wallin.

    Google Scholar 

  • Richter HJ (1988) Gouramis and Other Anabantoids. Neptune City, NJ: TFH Publications.

    Google Scholar 

  • Rogers PH, Cox H (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 131–149.

    Google Scholar 

  • Romer AS, Parsons TS (1983) Vergleichende Anatomie der Wirbeltiere. Hamburg: Paul Parey Verlag.

    Google Scholar 

  • Ross QE, Dunning DJ, Menezes JK Jr, Kenna MJ, Tiller GW (1996) Responses of alewives to high-frequency sound at a power plant intake in Ontario. North Am J Fish Manage 16:548–559.

    Google Scholar 

  • Sagemehl M (1885) Beiträge zur vergleichenden Anatomie der Fische. III. Das Cranium der Characiniden nebst allgemeinen Bemerkungen über die mit einem Weber’schen Apparat versehenen Physostomen-Familien. Gegenbaur’s Morphol Jahrb 10:1–119.

    Google Scholar 

  • Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204.

    PubMed  CAS  Google Scholar 

  • Sand O, Karlsen HE (2000) Detection of infrasound and linear acceleration in fishes. Philos Trans R Soc Lond 355:1295–1298.

    CAS  Google Scholar 

  • Schachner G (1977) Mechanismen und biologische Bedeutung der Schallerzeugung und wahrnehmung beim südamerikanischen Antennenwels (Pimelodus sp. Pimelodidae). Doctoral thesis, University of Vienna.

    Google Scholar 

  • Schaller F (1967) Die Lauterzeugung des Jaraqui, Prochilodus insignis Schomburgh 1841 (Pisces, Characoidei, Anastomidae). Verh Dt Zool Ges 1967:365–370.

    Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DE, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–322.

    Google Scholar 

  • Schneider H (1941) Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörver-mögen. Z Vergl Physiol 29:172–194.

    Google Scholar 

  • Scholik AR, Yan HY (2000) Effects of underwater noise on auditory sensitivity of cyprinid fish. Hear Res 152:17–24.

    Google Scholar 

  • Sörensen W (1895) Are the extrinsic muscles of the air-bladder in some Siluroidae and the “elastic spring” apparatus of others subordinate to the voluntary production of sounds? What is, according to our present knowledge, the function of the Weberian ossicles? J Anat Physiol 29:399–423, 205–229, 518–52.

    PubMed  Google Scholar 

  • Spanier E (1979) Aspects of species recognition by sound in four species of damselfish, genus Eupomacentrus (Pisces: Pomacentridae). Z Tierpsychol 51:301–316.

    PubMed  CAS  Google Scholar 

  • Steinberg R (1957) Unterwassergeräusche und Fischerei. Prot Fischereitech 4:216–249.

    Google Scholar 

  • Stipetić E (1939) Über das Gehörorgan der Mormyriden. Z Vergl Physiol 26:740–752.

    Google Scholar 

  • Stout JF (1963) The significance of sound production during the reproductive behaviour of Notropis analostanus (Family Cyprinidae). Anim Behav 11:83–92.

    Google Scholar 

  • Tavolga WN (1956) Visual, chemical and sound stimuli as cues in the sex discriminatory behavior of the gobiid fish, Bathygobius soporator. Zoologica 41:49–64.

    Google Scholar 

  • Tavolga WN (1958) Underwater sounds produced by males of the bleniid fish, Chas-modes bosquianus. Ecology 39:759–760.

    Google Scholar 

  • Tavolga WN (1967) Masked auditory thresholds in teleost fishes. In: Tavolga WN (ed) Marine Bio-Acoustics II. Oxford, UK: Pergamon Press, pp. 233–245.

    Google Scholar 

  • Tavolga WN (1976) Acoustic obstacle detection in the sea catfish (Arius felis). In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 185–204.

    Google Scholar 

  • Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bull Am Mus Nat Hist 126:177–240.

    Google Scholar 

  • Tester AL, Kendall JI, Milisen WB (1972) Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pac Sci 26:264–274.

    Google Scholar 

  • Urick RJ (1983) Principles of Underwater Sound, 3rd ed. Los Altos, CA: Peninsula.

    Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • von Frisch K (1936) Über den Gehörsinn der Fische. Biol Rev 11:210–246.

    Google Scholar 

  • von Frisch K, Stetter H (1932) Untersuchungen tiber den Sitz des Gehörsinnes bei der Elritze. Z Vergl Physiol 17:687–801.

    Google Scholar 

  • Weber EH (1820) Aure et Auditu Hominis et Animaliurn. Pars I. De Aure Animalium Aquatilium. Leipzig: Gerhard Fleischer.

    Google Scholar 

  • Weiss BA, Strother WF, Hartig GH (1969) Auditory sensitivity in the bullhead catfish (Ictalurus nebulosusi). Proc Nat Acad Sci USA 64:552–556.

    PubMed  CAS  Google Scholar 

  • Wever EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol V/1. Auditory System. Berlin: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Wilson B, Dill LM (2002) Pacific herring respond to simulated odontocete echolocation sounds. Can J Fish Aquat Sci 59:542–553.

    Google Scholar 

  • Wolff DL (1966) Akustische Untersuchungen zur Klapperfischerei und verwandter Methoden. Z Fisch Hilfswiss 14:277–315.

    Google Scholar 

  • Wolff DL (1968) Das Hörvermögen des Kaulbarsches (Acerina cernua L.) und des Zanders (Lucioperca sandra Cuv. und Val.). Z Vergl Physiol 60:14–33.

    Google Scholar 

  • Wysocki LE, Ladich F (2002) Can fishes resolve temporal characteristics of sounds? New insights using auditory brainstem response. Hear Res 169:36–46.

    PubMed  Google Scholar 

  • Yan HY, Fine ML, Horn HS, Colon WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol [A] 186:435–445.

    CAS  Google Scholar 

  • Yost WA (1994) Fundamentals of Hearing, 3rd ed. San Diego: Academic Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ladich, F., Popper, A.N. (2004). Parallel Evolution in Fish Hearing Organs. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics