Skip to main content
Log in

Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Division of labor among eusocial insect workers is a hallmark of advanced social organization, but its underlying neural mechanisms are not well understood. We investigated whether differences in whole-brain levels of the biogenic amines dopamine (DA), serotonin (5HT), and octopamine (OA) are associated with task specialization and genotype in similarly sized and aged workers of the leaf-cutting ant Acromyrmex echinatior, a polyandrous species in which genotype correlates with worker task specialization. We compared amine levels of foragers and waste management workers to test for an association with worker task, and young in-nest workers across patrilines to test for a genetic influence on brain amine levels. Foragers had higher levels of DA and OA and a higher OA:5HT ratio than waste management workers. Patrilines did not significantly differ in amine levels or their ratios, although patriline affected worker body size, which correlated with amine levels despite the small size range sampled. Levels of all three amines were correlated within individuals in both studies. Among patrilines, mean levels of DA and OA, and OA and 5HT were also correlated. Our results suggest that differences in biogenic amines could regulate worker task specialization, but may be not be significantly affected by genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal M, Giannoni Guzmán M, Morales-Matos C, Del Valle Díaz RA, Abramson CI, Giray T (2011) Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS ONE 6:e25371

    Article  PubMed  CAS  Google Scholar 

  • Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ (2009) Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323:627–630

    Article  PubMed  CAS  Google Scholar 

  • Arathi H, Spivak M (2001) Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Anim Behav 62:57–66

    Article  Google Scholar 

  • Arenas A, Giurfa M, Farina W, Sandoz J (2009) Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage. Eur J Neurosci 30:1498–1508

    Article  PubMed  CAS  Google Scholar 

  • Armitage SA, Boomsma JJ (2010) The effects of age and social interactions on innate immunity in a leaf-cutting ant. J Insect Physiol 56:780–787

    Article  PubMed  CAS  Google Scholar 

  • Ballari S, Farji-Brener AG, Tadey M (2007) Waste management in the leaf-cutting ant Acromyrmex lobicornis: division of labour, aggressive behaviour, and location of external refuse dumps. J Insect Behav 20:87–98

    Article  Google Scholar 

  • Barron AB, Robinson GE (2005) Selective modulation of task performance by octopamine in honey bee (Apis mellifera) division of labour. J Comp Physiol A 191:659–668

    Article  Google Scholar 

  • Barron A, Schulz D, Robinson G (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol A 188:603–610

    Article  CAS  Google Scholar 

  • Barron AB, Maleszka R, Vander Meer RK, Robinson GE (2007) Octopamine modulates honey bee dance behavior. Proc Natl Acad Sci USA 104:1703–1707

    Article  PubMed  CAS  Google Scholar 

  • Behrends A, Scheiner R (2012) Octopamine improves learning in newly emerged bees but not in old foragers. J Exp Biol 215:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Robichon A, Sokolowski M, Robinson G (2002) Influence of gene action across different time scales on behavior. Science 296:741–744

    Article  PubMed  CAS  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Shpigler H, Wheeler DE, Robinson GE (2009) Endocrine influences on the organization of insect societies. In: Pfaff DW, Robert TR (eds) Hormones, brain and behavior, 2nd edn. Academic Press, San Diego, pp 1027–1070

    Chapter  Google Scholar 

  • Bot AN, Currie CR, Hart AG, Boomsma JJ (2001) Waste management in leaf-cutting ants. Ethol Ecol Evol 13:225–237

    Article  Google Scholar 

  • Boulay R, Soroker V, Godzinska E, Hefetz A, Lenoir A (2000) Octopamine reverses the isolation-induced increase in trophallaxis in the carpenter ant Camponotus fellah. J Exp Biol 203:513–520

    PubMed  CAS  Google Scholar 

  • Božič J, Woodring J (1998) Variations of brain biogenic amines in mature honeybees and induction of recruitment behavior. Comp Biochem Physiol, A:Comp Physiol 120:737–744

    Article  Google Scholar 

  • Camargo R, Forti L, Lopes J, Andrade A, Ottati A (2007) Age polyethism in the leaf-cutting ant Acromyrmex subterraneus brunneus Forel, 1911 (Hym., Formicidae). J Appl Entomol 131:139–145

    Article  Google Scholar 

  • Capaldi E, Robinson G, Fahrbach S (1999) Neuroethology of spatial learning: the birds and the bees. Annu Rev Psychol 50:651–682

    Article  PubMed  CAS  Google Scholar 

  • Chapman NC, Oldroyd BP, Hughes WO (2007) Differential responses of honeybee (Apis mellifera) patrilines to changes in stimuli for the generalist tasks of nursing and foraging. Behav Ecol Sociobiol 61:1185–1194

    Article  Google Scholar 

  • Cherrett J (1972) Some factors involved in the selection of vegetable substrate by Atta cephalotes (L.)(Hymenoptera: Formicidae) in tropical rain forest. J Anim Ecol 41:647–660

    Article  Google Scholar 

  • Constant N, Santorelli LA, Lopes JF, Hughes WO (2012) The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav Ecol 23:1284–1288

    Article  Google Scholar 

  • Crozier R, Page R (1985) On being the right size: male contributions and multiple mating in social Hymenoptera. Behav Ecol Sociobiol 18:105–115

    Article  Google Scholar 

  • Cuvillier-Hot V, Lenoir A (2006) Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi. Naturwissenschaften 93:149–153

    Article  PubMed  CAS  Google Scholar 

  • Detrain C, Pasteels JM (1992) Caste polyethism and collective defense in the ant, Pbeidole pallidula: the outcome of quantitative differences in recruitment. Behav Ecol Sociobiol 29:405–412

    Article  Google Scholar 

  • Do Nascimento RR, Morgan E, Moreira DD, Della Lucia TM (1994) Trail pheromone of leaf-cutting ant Acromyrmex subterraneus subterraneus (Forel). J Chem Ecol 20:1719–1724

    Article  PubMed  CAS  Google Scholar 

  • Falibene A, Rössler W, Josens R (2012) Serotonin depresses feeding behaviour in ants. J Insect Physiol 58:7–17

    Article  PubMed  CAS  Google Scholar 

  • Giraldo YM, Patel E, Gronenberg W, Traniello JF (2012) Division of labor and structural plasticity in an extrinsic serotonergic mushroom body neuron in the ant Pheidole dentata. Neurosci Lett 534:107–111

    Article  PubMed  Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5:146–156

    PubMed  CAS  Google Scholar 

  • Hart AG, Ratnieks FL (2001) Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant Atta cephalotes. Behav Ecol Sociobiol 49:387–392

    Article  Google Scholar 

  • Hart AG, Ratnieks FL (2002) Waste management in the leaf-cutting ant Atta colombica. Behav Ecol 13:224–231

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap Press, Cambridge

    Book  Google Scholar 

  • Howard JJ, Henneman ML, Cronin G, Fox JA, Hormiga G (1996) Conditioning of scouts and recruits during foraging by a leaf-cutting ant, Atta colombica. Anim Behav 52:299–306

    Article  Google Scholar 

  • Hoyer SC, Liebig J, Rössler W (2005) Biogenic amines in the ponerine ant Harpegnathos saltator: serotonin and dopamine immunoreactivity in the brain. Arth Struct Dev 34:429–440

    Article  CAS  Google Scholar 

  • Huang Z, Robinson GE (1996) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39:147–158

    Article  Google Scholar 

  • Hughes WO, Boomsma JJ (2007) Genetic polymorphism in leaf-cutting ants is phenotypically plastic. Proc R Soc London, B 274:1625–1630

    Article  CAS  Google Scholar 

  • Hughes WHO, Sumner S, Van Borm S, Boomsma JJ (2003) Worker caste polymporphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc Natl Acad Sci USA 100:9394–9397

    Article  PubMed  CAS  Google Scholar 

  • Hughes WO, Bot AN, Boomsma JJ (2010) Caste-specific expression of genetic variation in the size of antibiotic-producing glands of leaf-cutting ants. Proc R Soc London, B 277(609):615

    Google Scholar 

  • Jones JC, Myerscough MR, Graham S, Oldroyd BP (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305:402–404

    Article  PubMed  CAS  Google Scholar 

  • Kamhi JF, Traniello JFA (2013) Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav Evol accepted with minor revision

  • Kelber C, Rössler W, Roces F, Kleineidam CJ (2009) The antennal lobes of fungus-growing ants (Attini): neuroanatomical traits and evolutionary trends. Brain Behav Evol 73:273–284

    Article  PubMed  Google Scholar 

  • Kleineidam C, Ruchty M, Casero-Montes Z, Roces F (2007a) Thermal radiation as a learned orientation cue in leaf-cutting ants (Atta vollenweideri). J Insect Physiol 53:478–487

    Article  PubMed  CAS  Google Scholar 

  • Kleineidam C, Rössler W, Hölldobler B, Roces F (2007b) Perceptual differences in trail-following leaf-cutting ants relate to body size. J Insect Physiol 53:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Kravitz E (2000) Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol A 186:221–238

    Article  PubMed  CAS  Google Scholar 

  • Libersat F, Pflueger H (2004) Monoamines and the orchestration of behavior. Bioscience 54:17–25

    Article  Google Scholar 

  • Lucas C, Sokolowski MB (2009) Molecular basis for changes in behavioral state in ant social behaviors. Proc Natl Acad Sci USA 106:6351–6356

    Article  PubMed  CAS  Google Scholar 

  • Maleszka J, Barron AB, Helliwell PG, Maleszka R (2009) Effect of age, behaviour and social environment on honey bee brain plasticity. J Comp Physiol A 195:733–740

    Article  Google Scholar 

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Molina Y, O’Donnell S (2008) Age, sex, and dominance-related mushroom body plasticity in the paperwasp Mischocyttarus mastigophorus. Devel Neurobiol 68:950–959

    Article  Google Scholar 

  • Muscedere ML, Traniello JF (2012) Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste-and age-related patterns of worker brain organization. PLoS ONE 7:e31618

    Article  PubMed  CAS  Google Scholar 

  • Muscedere ML, Johnson N, Gillis BC, Kamhi JF, Traniello JF (2012) Serotonin modulates worker responsiveness to trail pheromone in the ant Pheidole dentata. J Comp Physiol A 198:219–227

    Article  CAS  Google Scholar 

  • Muscedere ML, Djermoun A, Traniello JF (2013) Brood-care experience, nursing performance, and neural development in the ant Pheidole dentata. Behav Ecol Sociobiol 67:775–784

    Article  Google Scholar 

  • Naug D, Gadagkar R (1999) Flexible division of labor mediated by social interactions in an insect colony—a simulation model. J Theor Biol 197:123–133

    Article  PubMed  Google Scholar 

  • Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413

    Article  PubMed  Google Scholar 

  • Oldroyd BP, Sylvester HA, Wongsiri S, Rinderer TE (1994) Task specialization in a wild bee, Apis florea (Hymenoptera: Apidae), revealed by RFLP banding. Behav Ecol Sociobiol 34:25–30

    Article  Google Scholar 

  • Ortius-Lechner D, Gertsch PJ, Boomsma JJ (2000) Variable microsatellite loci for the leafcutter ant Acromyrmex echinatior and their applicability to related species. Mol Ecol 9:114–116

    Article  PubMed  CAS  Google Scholar 

  • Page RE, Amdam GV (2007) The making of a social insect: developmental architectures of social design. BioEssays 29:334–343

    Article  PubMed  CAS  Google Scholar 

  • Page RE Jr, Scheiner R, Erber J, Amdam GV (2006) The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.). Curr Top Dev Biol 74:253–286

    Article  PubMed  CAS  Google Scholar 

  • Pankiw T, Page RE Jr (1999) The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol A 185:207–213

    Article  PubMed  CAS  Google Scholar 

  • Pankiw T, Waddington KD, Page RE Jr (2001) Modulation of sucrose response thresholds in honey bees (Apis mellifera L.): influence of genotype, feeding, and foraging experience. J Comp Physiol A 187:293–301

    Article  PubMed  CAS  Google Scholar 

  • Rasband W (1997) Image J. US National Institutes of Health, Bethesda

    Google Scholar 

  • Ravary F, Lecoutey E, Kaminski G, Châline N, Jaisson P (2007) Individual experience alone can generate lasting division of labor in ants. Curr Biol 17:1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Rein J, Mustard JA, Strauch M, Smith BH, Galizia CG (2013) Octopamine modulates activity of neural networks in the honey bee antennal lobe. J Comp Physiol A. doi:10.1007/s00359-013-0805-y

    Google Scholar 

  • Riffell JA, Lei H, Abrell L, Hildebrand JG (2013) Neural basis of a pollinator’s buffet: olfactory specialization and learning in Manduca sexta. Science 339:200–204

    Article  PubMed  CAS  Google Scholar 

  • Riveros AJ, Gronenberg W (2010) Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. Brain Behav Evol 75:138–148

    Article  PubMed  Google Scholar 

  • Riveros A, Srygley R (2008) Do leafcutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass? Anim Behav 75:1273–1281

    Article  Google Scholar 

  • Riveros AJ, Seid MA, Wcislo WT (2012) Evolution of brain size in class-based societies of fungus-growing ants (Attini). Anim Behav 83:1043–1049

    Article  Google Scholar 

  • Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37:637–665

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE, Page RE Jr (1989) Genetic determination of nectar foraging, pollen foraging, and nest-site scouting in honey bee colonies. Behav Ecol Sociobiol 24:317–323

    Article  Google Scholar 

  • Saverschek N, Herz H, Wagner M, Roces F (2010) Avoiding plants unsuitable for the symbiotic fungus: learning and long-term memory in leaf-cutting ants. Anim Behav 79:689–698

    Article  Google Scholar 

  • Scheiner R, Arnold G (2009) Effects of patriline on gustatory responsiveness and olfactory learning in honey bees. Apidologie 41:29–37

    Article  Google Scholar 

  • Scheiner R, Baumann A, Blenau W (2006) Aminergic control and modulation of honeybee behaviour. Curr Neuropharmacol 4:259–276

    Article  PubMed  CAS  Google Scholar 

  • Schulz D, Robinson G (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J Comp Physiol A 184:481–488

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies. J Comp Physiol A 187:53–61

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Barron AB, Robinson GE (2003) A role for octopamine in honey bee division of labor. Brain Behav Evol 60:350–359

    Article  Google Scholar 

  • Schulz DJ, Pankiw T, Fondrk MK, Robinson GE, Page RE Jr (2004) Comparisons of juvenile hormone hemolymph and octopamine brain titers in honey bees (Hymenoptera: Apidae) selected for high and low pollen hoarding. Ann Entomol Soc Am 60:350–359

    Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

    PubMed  CAS  Google Scholar 

  • Seid MA, Traniello JF (2005) Age-related changes in biogenic amines in individual brains of the ant Pheidole dentata. Naturwissenschaften 92:198–201

    Article  PubMed  CAS  Google Scholar 

  • Seid MA, Traniello JF (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav Ecol Sociobiol 60:631–644

    Article  Google Scholar 

  • Seid MA, Goode K, Li C, Traniello JF (2008) Age-and subcaste-related patterns of serotonergic immunoreactivity in the optic lobes of the ant Pheidole dentata. Devel Neurobiol 68:1325–1333

    Article  Google Scholar 

  • Seid MA, Castillo A, Wcislo WT (2011) The allometry of brain miniaturization in ants. Brain Behav Evol 77:5–13

    Article  PubMed  Google Scholar 

  • Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Devel Neurobiol 70:408–423

    Article  Google Scholar 

  • Stieb SM, Hellwig A, Wehner R, Roessler W (2012) Visual experience affects both behavioral and neuronal aspects in the individual life history of the desert ant Cataglyphis fortis. Devel Neurobiol 72:729–742

    Article  Google Scholar 

  • Sumner S, Hughes WO, Pedersen JS, Boomsma JJ (2004) Ant parasite queens revert to mating singly. Nature 428:35–36

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Robinson GE, Logan BJ, Laverty R, Mercer AR (1992) Changes in brain amine levels associated with the morphological and behavioural development of the worker honeybee. J Comp Physiol A 170:715–721

    Article  PubMed  CAS  Google Scholar 

  • Theraulaz G, Bonabeau E, Denuebourg J (1998) Response threshold reinforcements and division of labour in insect societies. Proc R Soc London B 265:327–332

    Article  Google Scholar 

  • Vilela EF, Jaffé K, Howse PE (1987) Orientation in leaf-cutting ants (Formicidae: Attini). Anim Behav 35:1443–1453

    Article  Google Scholar 

  • Waddington SJ, Hughes WO (2010) Waste management in the leaf-cutting ant Acromyrmex echinatior: the role of worker size, age and plasticity. Behav Ecol Sociobiol 64:1219–1228

    Article  Google Scholar 

  • Waddington SJ, Santorelli LA, Ryan FR, Hughes WO (2010) Genetic polyethism in leaf-cutting ants. Behav Ecol 21:1165–1169

    Article  Google Scholar 

  • Wetterer J, Shafir S, Morrison L, Lips K, Gilbert G, Cipollini M, Blaney C (1992) On-and off-trail orientation in the leaf-cutting ant, Atta cephalotes (L.)(Hymenoptera: Formicidae). J Kans Entomol Soc 1992:96–98

    Google Scholar 

  • Wilson EO (1971) Insect societies. Belknap Press, Cambridge

    Google Scholar 

  • Wilson EO (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav Ecol Sociobiol 7:157–165

    Article  Google Scholar 

  • Withers G, Fahrbach S, Robinson G (1995) Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. J Neurobiol 26:130–144

    Article  PubMed  CAS  Google Scholar 

  • Wnuk A, Wiater M, Godzinska EJ (2011) Effect of past and present behavioural specialization on brain levels of biogenic amines in workers of the red wood ant Formica polyctena. Physiol Entomol 36:54–61

    Article  Google Scholar 

Download references

Acknowledgments

ARS was supported by a European Union FP7 Marie Curie International Incoming Fellowship. MLM was supported by a Howard Hughes Medical Institute Postdoctoral Faculty Fellowship. This work was supported by NSF Collaborative Research Grants IOB 0725013 and 0724591 to JFAT and W. Gronenberg, respectively. We thank the Smithsonian Tropical Research Institute and E.A. Herre for facilities in Gamboa, the Autoridad Nacional del Ambiente (ANAM) for permission to collect and export the ants, and Rowena Mitchell for helping care for the ants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam R. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.R., Muscedere, M.L., Seid, M.A. et al. Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior . J Comp Physiol A 199, 1117–1127 (2013). https://doi.org/10.1007/s00359-013-0854-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0854-2

Keywords

Navigation